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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Etablierung eines Frameworks für probabilistische Modellie-
rung und Filterung direkt auf der Mannigfaltigkeit für Zufallsvariablen auf direktionalen Domänen.
Konventionelle Filter, welche die Topologie berücksichtigen, basieren auf den klassischen Annahmen
parametrischer Modelle für zirkuläre oder hypersphärische Domänen. Sie nutzen meist rudimentäre
Schätzverfahren, die zu Unzulänglichkeiten in praktischen Anwendungen führen können. Daher
werden in dieser Arbeit die Konzepte für zirkuläre und hypersphärische Domänen so generalisiert,
dass sie auf cartesische Produkte mit euklidischen Räumen angewandt werden können. Dies erlaubt
es auch, sie für praktische Anwendungen, wie dem Modellieren und Schätzen von Starrkörperbewe-
gungen, anzuwenden. Im Rahmen der betrachteten direktionalen Domänen wird das Framework
wie im Folgenden beschrieben aufgebaut.

Um theoretisch fundierte Modelle und Filter herleiten zu können, beginnen wir mit einer Untersu-
chung der Geometrie der betrachteten direktionalen Domänen. Einsichten zu hypersphärischen
Geometrien werden erst kombiniert mit Verfahren zur Abbildung von hypersphärischen Räumen auf
Tangentialräume und zurück, wie beispielsweise Logarithm/Exponential Maps, Orthogonalprojek-
tionen und gnomonische Projektionen/Retraktionen. Für cartesische Produkte von Hypersphären
und euklidischen Räumen oder direktionale Domänen mit besonderen topologischen Merkmalen
(wie antipodale Symmetrie) werden mehrere geometrische Werkzeuge betrachtet. Hierbei wird der
Fokus auf die Mannigfaltigkeiten der Einheitsquaternionen oder dualen Quaternionen gelegt. Diese
sind von enormer Wichtigkeit zur Schätzung von Starrkörperbewegungen. Darüber hinaus werden
Methoden für den Aufbau/Transport lokaler Basen, die Tangentialräume auf nichtlinearen Mannig-
faltigkeiten aufspannen, vorgestellt, um eine Interpretation der Unsicherheit in den Tangentialraum
zu ermöglichen.

Anhand der gewonnenen Erkenntnisse erweitern wir zunächst die parametrischen direktionalen
Modelle und Filter. Als Beispiel für eine Domäne, die sich aus einer direktionalen und einer anderen
Domäne zusammensetzt, wird die Mannigfaltigkeit der dualen Quaternionen gewählt. Hierfür wird
ein Ansatz basierend auf Paralleltransport mit Bingham-Gaussians umgesetzt. Neben der Model-
lierung der hypersphärischen Komponente mit Binghamverteilungen und der linearen Komponente
mit Gaußverteilungen werden Korrelationen zwischen den Komponenten durch hypersphärischen
Paralleltransport berücksichtigt. Zur Erhöhung der Güte von parametrischen direktionalen Filtern
werden zunächst neue Ansätze zum deterministischen Sampling mit unterschiedlichen Stichpro-
bengrößen vorgestellt. Hierbei werden die ersten beiden Momente präzise berücksichtigt, höhere
Momente jedoch nur approximiert. Für praktische Anwendungen wird die konkrete Methodik
für Bingham-Verteilungen und von Mises–Fisher-Verteilungen vorgestellt. Des Weiteren werden
deterministische progressive Updateschritte vorgestellt, um starke Nichtlinearitäten im System-
modell oder Messmodelle, die nicht dem Identitätsmodell entsprechen, berücksichtigen zu können.
Simulationen zeigen, dass durch Einbeziehung des einstellbaren deterministischen Samplings in den
progressiven Filter in nichtlinearen direktionalen Schätzproblemen eine deutlich höhere Genauigkeit
erzielt werden kann.
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Zusammenfassung

Darüber hinaus werden nichtparametrische Modelle und Filter basierend auf Dirac Mischvertei-
lungen auf systematische Weise hergeleitet. Für Hypersphären, die stets kompakt und beschränkt
sind, werden neue Diskretisierungsstrategien vorgestellt, um gleichmäßige oder an den Moden der
Verteilung zentrierte hypersphärische Grids zu erhalten. Erstere erlauben eine feste, gleichmäßige
Auflösung, wohingegen Letztere eine genauere Approximation in der Nähe der Mode erlauben und
sich der Dispersion im Falle von antipodaler Symmetrie anpassen können. Auch wird ein generischer
Ansatz für das diskrete Filtern auf der Mannigfaltigkeit vorstellt. Es wird dargelegt, wie das diskrete
Modell basierend auf dem modenzentrierten Grid zum nichtlinearen Schätzen von Quaternionen
darin integriert werden kann. Um die Anwendbarkeit von sequenziellen Monte-Carlo-Methoden
für nichtparametrische direktionale Schätzung zu verbessern, wird ein Unscented Particle Filter
eingeführt. Bei diesem wird für jedes Partikel ein on-manifold Unscented Kalman Filter verwendet,
um die Proposal Density zu finden, welche neue Observationen berücksichtigt. Im Gegensatz zu
einfachen Partikel Filtern, welche die Transitionsdichte als Proposal Density verwenden, können mit
dem neuen Verfahren bessere Ergebnisse unter schwierigen Bedingungen, wie starker Nichtlinearität,
Nichtstationarität oder konzentrierten Likelihoods, erzielt werden.

Zu guter Letzt wird ein einheitliches Konzept für die Reapproximation von Dirac Mischverteilungen
vorgestellt. Für eine gegebene Dirac Mischverteilung basierend auf vielen empirisch gewonnenen
Samples wird das Konzept auf die unterliegende Geometrie der Mannigfaltigkeit angepasst, um
so eine Dirac Mischdichte mit weniger und anpassbarer Anzahl an Komponenten zu erhalten,
die auch die Dispersion berücksichtigt. Basierend auf Beispielen für den Kreis, die Hypersphäre
und die Mannigfaltigkeite der dualen Quaternionen, erlaubt das neue Konzept eine effizientere
diskrete Darstellung als Monte-Carlo-Methoden oder Methoden basierend auf Grids. Für den
hypersphärischen Fall wird eine Reapproximations- und Rekonstruktionsmethode basierend auf von
Mises–Fisher Mixturen vorgestellt, die für unbekannte zugrundeliegende kontinuierliche Dichten
anwendbar ist. Darüber hinaus wird das vorgestellte Reapproximationsverfahren in den generi-
schen diskreten Filteransatz integriert, um auf direktionalen Domänen ohne Vorliegen konkreter
Rauschverteilungen nichtparametrisch filtern zu können. Simulationen zeigen, dass dieser Ansatz
parametrischen Filtern und Filtern basierend auf Monte-Carlo-Methoden überlegen ist.

Der Hauptbeitrag dieser Arbeit ist die systematische Entwickelung eines theoretischen Frameworks
zur Bayes’schen Schätzung unter Berücksichtigung der Topologie. Sie liefert eine theoretisch fun-
dierte und solide Basis für die Anwendung von geomeriegetriebenen Methoden zur Quantifizierung
und Behandlung von Unsicherheiten in vielen technischen Anwendungsfällen.
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Abstract

We establish a methodological framework for on-manifold probabilistic modeling and filtering
of random variables in directional domains. Conventional topology-aware directional filters still
adhere to the classical assumptions of parametric models defined in circular or hyperspherical
domains, and are mostly equipped with rudimentary estimation techniques, which may suffer
from multiple issues in the face of requirements close to engineering practices. In this thesis, we
first extend the traditional scope of directional domains from circle/hyperspheres to a generalized
concept that also allows their products with Euclidean spaces. This further allows addressing
relevant practical application scenarios, such as modeling and estimating uncertain rigid body
motions. Within the scope of the considered directional domains, the proposed framework is built
up as follows.

As a preparation for establishing theoretically sound modeling and filtering methods, we start
off with providing a geometric investigation on the considered directional manifolds. Insights
to hyperspherical geometry is first brought together with approaches to bridging the nonlinear
manifold to a hyperspherical tangent space including the logarithm/exponential maps, orthographic
and gnomonic projections/retractions. For hyperspheres in conjunction with Euclidean spaces or
those with additional topological structures (such as antipodal symmetry), we elaborate several
geometric tools with showcases on the unit quaternion and unit dual quaternion manifolds, which
are of vital importance for spatial transformation estimation. Moreover, methods are provided for
establishing/transporting local bases spanning tangent spaces on nonlinear manifolds for enabling
in-tangent-space uncertainty interpretation.

Based on the geometric insights to directional manifolds, we first focus on upgrading the parametric
directional modeling and filtering methods. For extending topology-aware parametric models in
composite directional domains, we select the unit dual quaternion manifold for demonstration
and propose the parallel transport-based Bingham–Gaussian modeling approach. Besides the
individual modeling of the hyperspherical and linear components using the Bingham and Gaussian
distributions, respectively, probabilistic correlation between the components is interpreted by
expressing the linear model w.r.t. the dispersion on the hypersphere via parallel transport. For
enhancing the performance of parametric directional filters, we first propose novel sampling schemes
to allow configurable sizes of deterministic samples under the scheme of unscented transform,
namely, by preserving moments up to the second order of the underlying distribution, meanwhile
approximating its higher-order shape information. For practice, the methodology is concretized
for the Bingham distribution and the von Mises–Fisher distribution. Further, we introduce the
deterministic progressive update step for handling estimation with strong nonlinearities and non-
identity measurement models. Simulations show that incorporating the configurable deterministic
sampling into the progressive fusion scheme can deliver considerable performance enhancements
for nonlinear directional estimation tasks.

Moreover, Dirac mixture-based nonparametric modeling and filtering methods are established
in a systematic fashion. For unit hyperspheres, which are compact and bounded, we propose
discretization strategies for generating quasi-equidistant/mode-centric hyperspherical grid points.
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Abstract

The former enables a uniform and fixed resolution, while the latter provides a more detailed
approximation around the mode and its grid topology enables inherent coherence to dispersions
of antipodal symmetry. We further provide a generic design of on-manifold discrete filtering
and showcase how to integrate the mode-centric grid-based discrete model into it for nonlinear
quaternion estimation. In order to improve the utility of sequential Monte Carlo methods for
nonparametric directional estimation, we establish the unscented particle filtering scheme with
each particle running an individual on-manifold unscented Kalman filter to obtain a proposal
incorporating the recent observation. Compared with the plain particle filter with transition density
being the proposal, the new scheme shows superior performance even under challenging conditions
such as strong nonlinearities, non-stationary systems or peaky likelihoods.

Last but not least, for enabling efficient discrete modeling, we propose a unified paradigm for
on-manifold Dirac mixture reapproximation. Given a Dirac mixture with many components located
at directional samples that are collected from empirical data, the novel paradigm is then customized
according to the underlying manifold geometry to produce a target Dirac mixture with fewer and
configurable components of dispersion-adaptive layout. Based on showcases with customization
on the unit circle, unit hyperspheres and unit dual quaternion manifolds, the proposed paradigm
enables more efficient discrete modeling than grid-based or Monte Carlo-based methods. Built
upon its hyperspherical variant, a reapproximation & reconstruction procedure is proposed for
continuous probabilistic modeling of unknown underlying distribution in the form of von Mises–
Fisher mixtures. Further, we integrate the proposed reapproximation paradigm into the generic
discrete filtering scheme for nonparametric directional estimation with unknown form of noise
distribution. Evaluations on nonlinear spherical estimation manifest its leading performance in
comparison with Monte Carlo-based or parametric filters.

The major technical content of this thesis systematically drafts out a theoretical framework for
topology-aware recursive Bayesian estimation. It provides a theoretically sound and solid basis
for applying geometry-driven methodologies to quantifying and tackling uncertainties in extensive
engineering practices.
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CHAPTER
1

Introduction

Uncertainty quantification and state estimation of random variables in directional domains play
important roles in ubiquitous application scenarios, in particular, robotic perception, navigation
and control, computer vision and graphics, and data mining, among others [1–7]. Unlike Euclidean
spaces, directional manifolds, e.g., the unit hyperspheres1, exhibit nonlinear and periodic topological
structure, to which dispersion of random variables are thereon confined. Conventional schemes
of recursive estimation for directional domains often rely on local linearization at a given state
vector, e.g., via Lie algebra or Riemannian geometry, inducing an Euclidean space (namely, a
tangent plane), where the uncertainty underlying on the manifold is modeled by a Gaussian
distribution. Based thereon, classical filtering approaches, e.g., the Kalman filter and its variants
such as the unscented Kalman filter (UKF) [8], can be deployed to the linearized space with proper
modifications [9–11]. However, in theory, such a paradigm produces a warped dispersion upon
interpreting the on-tangent-plane Gaussian distribution back on the manifold (via the exponential
map). To alleviate this artifact in practice, the assumption of small perturbation is often imposed,
albeit with the risk of being violated by fast system transition or large uncertainty.

Recently, enormous effort has been devoted to developing theoretically sound approaches to
recursive estimation for directional domains. A major advance, inter alia, has been made in
applying directional statistics [12] to probabilistic modeling and recursive estimation of random
variables with directional components [13]. Defined on nonlinear manifolds, distributions from
directional statistics inherently model the uncertainty in coherence with the underlying manifold
geometry, thereby eliminating the approximation artifacts induced by the linearization.

Within the scope of manifold-adaptive directional estimation, promising work has been pioneered
in various disciplines ranging from robotics to bioinformatics [14–17]. However, existing techniques
are typically application- and domain-specific, and one still faces various challenges with current
rudimentary designs. From the generic viewpoint of data fusion involving directional quantities,
there still remains a considerable theoretical gap between the previous state of the art2 and a
systematic architecture of topology-aware probabilistic modeling and filtering.

In this thesis, we aim to establish a methodological framework for on-manifold recursive Bayesian
estimation. Though highly robotics-related as later shown by the applications in Sec. 1.1, the
proposed approaches provide new and generically applicable “geometric” insights to data fu-
sion problems involving directional quantities, inducing a theoretically sound basis for extensive
engineering practices.

1 For conciseness, the term “hypersphere” denotes a sphere of any dimension when specifying the term is not needed.
2 As of the time before the contributions in this thesis were made in own publications.
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(A) input depth image (B) region growing in normal map transferred to S2 (C) segmented planes

Figure 1.1.: Plane extraction of real-world scene [20] transferred to clustering normal vectors via SCH-based
region growing (SCH-RG) [19].

In the remainder of this chapter, a few application scenarios incorporating uncertain directional
quantities are first introduced in Sec. 1.1 to elaborate representative topological spaces which
are of high interest to engineering. Afterward in Sec. 1.2, we scrutinize the major limitations of
past state-of-the-art directional filtering theories, on which the presented thesis focuses, thereby
delivering our major contributions. Further, a brief overview of the related work is provided in
Sec. 1.3. Finally, a sketch of the thesis structure is outlined in Sec. 1.4.

1.1 Random Variables Composing Directional Quantities

In the sense of statistics, directional manifolds refer to the topological spaces defined by unit vectors
in the Euclidean spaces (with extensions to rotation matrices) [12, 18]. We show the following
application scenarios from the own publications of the author to concretize the fundamental roles
played by tackling (uncertain) directional variables in reality.

Transferred primitive recognition on the unit sphere: In man-made environments, extracting
geometric primitives such as planes can largely raise the performance of scene representation
and understanding for intelligent mobile agents. Modern visual sensory modalities often provide
depth information in the format of organized point cloud (e.g., using RGB-D cameras), from
which the pixelwise surface normals can be easily obtained. Most existing approaches to plane
extractions exploit explicit plane parameterization for optimizing a certain point-to-plane metric,
which is hardly feasible for parallel processing on graphics hardware and requires downsampling
for real-time performance. A normal map can be transferred onto the unit sphere S2, with each
spherical point representing the pixelwise surface normal vector. In [19], we introduced a new
concept, the spherical convex hull (SCH), for implicit and nonparametric plane representation. As
shown in Fig. 1.1, normals are clustered on the unit sphere via expanding SCHs to find the maximal
pairwise orientation differences among spherical points along with region growing in the normal
map. The whole plane extraction scheme inherently realizes parallelism at both algorithmic and
implementationary levels, which is mostly enabled by the mechanism of comparing orientations
w.r.t. the arc length on S2. Fig. 1.2 further illustrates examples of extracting planes given two
synthesized normal maps. Deployed on common embedded GPUs, the approach guarantees state-
of-the-art segmentation accuracy and real-time processing in full resolution for typical RGB-D
images. This specific application underlines the benefits of tackling direction-related problems on
directional manifolds respecting the underlying topological structure.

Rigid body motion estimation and robotic perception: Accurate and robust state estimation,
in particular of the rigid body motions, is crucial for realizing high-performance autonomy of
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normals → planes normals → planes

Figure 1.2.: Plane extraction results of two synthetic scenes from [21] given by SCH-RG [19].

IMU

Livox Horizon

Velodyne HDL-64E

(A) LiDAR-inertial suites onboard different mobile platforms (B) reconstructed 3D map

Figure 1.3.: LiDAR-inertial fusion for rigid body motion estimation and scene reconstruction [25].

mobile robots [1]. Mathematically speaking, the six-DoF rigid body motions belong to the special
Euclidean group SE(3), which inherently comprises nonlinear topological structure due to the
rotation component belonging to the special orthogonal group SO(3). Minimal representations
such as Euler angles plus translations suffer from issues of discontinuities or singularities (e.g.,
the issue of “gimbal lock”). Such issues can be eliminated through overparameterization, for
instance, by using the well-known 4× 4 transformation matrices. But they introduce a large degree
of redundancy, inducing numerical instabilities and memory inefficiencies. Quaternions of unit
norm can be formulated into four-dimensional vectors confined to the unit hypersphere S3 ⊂ R4.
With only one degree of redundancy, they parameterize spatial rotations without ambiguities and
enable concise kinematic formulations incorporating measurements close to the sensory hardware
such as magnetometers and inertial measurement units (IMUs). Therefore, they are widely used
for spatial transformation representation (together with translation vectors) in sensor fusion and
control tasks [22–24]. For instance, we developed a tightly-coupled LiDAR-inertial odometry and
mapping system in [25] for robotic mobile perception. There, a keyframe-based sensor fusion
scheme estimates rigid body motions (parameterized by unit quaternions and translation vectors)
by directly fusing the extracted LiDAR features and preintegrated IMU measurements via sliding
window optimization. As shown in Fig. 1.3-(A), the system can be deployed to different mobile
platforms and is compatible for both conventional (HDL-64E) and solid-state (Livox Horizon)
LiDARs. It delivers real-time efficiency and superior tracking accuracy over existing competitive
systems (as of the date of the publication). A showcase of using the system for high-quality 3D
reconstruction of Schloss Karlsruhe is given in Fig. 1.3-(B).

Based on the quaternion representation and the dual number theory, dual quaternions are further
introduced for parameterizing six-DoF rigid body motions [26]. Formulated into eight-dimensional
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(A) a Bingham distribution on S2 (B) stereo visual odometry and mapping on [3]

Figure 1.4.: Dual quaternion-based recursive SE(3) estimation using Bingham distributions on S3 [31].

vectors (essentially composed of two quaternions, the real part and the dual part, respectively), they
represent the spatial rotation and translation simultaneously without ambiguities, inducing only
two degrees of redundancy and enabling similar kinematic formulations as those of quaternions [27].
As alternatives to the transformation matrices, they are commonly deployed to applications in
computer graphics, navigation, and robotics [28–30]. In [31], we presented a stereo visual odometry
system using an unscented transform-based filtering method [8], with dual quaternions representing
the six-DoF egomotion. In order to model the uncertainty of the rotation components (i.e.,
quaternions) of the dual quaternion states, the Bingham distribution on the unit hypersphere S3 is
exploited. For the sake of visualization, we plot the distribution on S2 in Fig. 1.4-(A). Since an
arbitrary quaternion 𝑥 ∈ S3 and its antipode −𝑥 ∈ S3 represent the same rotation, the Bingham
distribution is a natural fit for probabilistic modeling given its dispersion of antipodal symmetry [32].
Fig. 1.4-(B) provides a snapshot of running the system on the 00 sequence of KITTI data set [3].
Given consecutive stereo images, the proposed dual quaternion-based recursive filter is effective
and delivers state-of-the-art tracking performance. Moreover, the use of Bingham distributions
provides a theoretically sound measure to quantify the uncertainty of the rotation estimate. A
detailed introduction of unit quaternions and unit dual quaternions will be given in Sec. 3.2 and
Sec. 3.3, respectively.

Short summary: As introduced in the aforementioned examples, directional quantities occur
ubiquitously in a variety of applications. Choosing the proper representation for a directional
quantity may drastically reformulate the problem, and thus provides better perspectives and
solutions for tackling complex tasks. Furthermore, directional variables are often coupled with
other directional or non-directional components in a covariant manner, inducing products of
manifolds of more complex geometric structure (e.g., the manifold of dual quaternions).

In this thesis, we extend the scope of directional domains to a more generic sense by also considering
their Cartesian products with Euclidean spaces. Consequently, recursive Bayesian estimations in the
generalized directional domains refer not only to the classical settings w.r.t. parametric directional
statistics [13] but also to more challenging scenarios of on-manifold probabilistic modeling and
filtering in the face of extensive engineering practices.
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1.2 Beyond Limitations: Considered Problems and Contributions

The major focus of this thesis is to establish a methodological framework for theoretically sound
probabilistic modeling and filtering in the generalized directional domains3. For showcasing
and evaluating the proposed techniques, we exploit unit hyperspheres and their products with
Euclidean spaces (e.g., the unit dual quaternion manifold). More specifically, we elaborate the
major considered problems and underline the corresponding contributions in the following sections.

1.2.1 Parametric Probabilistic Modeling for Composite Directional Domains

Limitation: Classical directional statistics and estimation methods have no consideration on the
manifolds composing both circle/hyperspheres and Euclidean spaces. As a representative example,
there existed in the past no parametric distribution for modeling uncertain dual quaternions
adaptively to the underlying topological structure. Particularly, probabilistic modeling on composite
directional manifolds requires not only handling the uncertainty in each individual component
but also the correlations between the components. As for dual quaternions representing six-DoF
rigid body motions, such a probabilistic correlation established between the component domains is
essential as it reflects how uncertain rotation and translation terms covary with each other.

Contribution: We upgrade parametric probabilistic modeling from hyperspheres to composite
directional manifolds incorporating both hyperspherical and Euclidean spaces with a showcase on
the manifold of unit dual quaternions representing SE(3) states [26]. For that, we first provide an
in-depth and systematic investigation on topological structures of the unit quaternion and unit
dual quaternion manifolds. Based thereon, a novel on-manifold parametric method is proposed for
modeling uncertain unit dual quaternions in coherence with the underlying manifold geometry.
A Bingham distribution and a Gaussian distribution are exploited to model uncertainties on the
hyperspherical and linear component domains, respectively, meanwhile the probabilistic correlations
between them are inherently considered w.r.t. parallel-transported Bingham principal directions.
Afterward, corresponding deterministic sampling and parameter fitting schemes are also provided
and validated for further deployment to recursive estimation.

1.2.2 Enhancing Parametric Directional Filters for Nonlinear Estimation

Limitation: Applying parametric models from directional statistics to state estimation requires
the facilitation of samples. As the random sampling scheme cannot reproduce the results and
lacks efficiency, deterministic sampling approaches following the idea of unscented transform (UT)
have been proposed [32, 33]. However, the basic UT-based sampling scheme only produces a
limited number of samples that preserve moments of the underlying distribution up to the second
order, deteriorating the estimation performance under strong nonlinearities or peaky likelihoods.
Furthermore, past state-of-the-art parametric directional filters are mostly designed for identity
measurement models – measurements are confined to the state domain and to following the form of
the state distribution. Given arbitrary sensory modalities, adaptations to the identity setup induce
additional approximation error and effort for preprocessing [32, 34]. In particular, such issues
are highlighted in high-dimensional cases (e.g., hyperspheres and their products with Euclidean

3 For conciseness in the remainder of this thesis, we use the term “directional domains” to denote both unit circle/hyperspheres
and their products with Euclidean spaces for unspecified cases.
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spaces), leading to theoretical restrictions of their applicability in practice (e.g., for estimating
spatial transformations).

Contribution: We introduce novel deterministic sampling approaches that enable configurable
sample sizes for two commonly used hyperspherical distributions, namely, the Bingham distribu-
tion [35, 36] and the von Mises–Fisher distribution [37, 38]. Based on hyperspherical geometry,
samples are drawn to guarantee the unscented transform (preserving moments up to the second
order) while approximating higher-order shape information of the underlying distribution. For
nonlinear directional filtering using non-identity measurement models, we further introduce the
deterministic progressive update scheme for stepwise measurement fusion adapted to the difference
among the sample likelihoods [38–40]. Applying the two enhancements in conjunction considerably
improves the applicability and performance of parametric directional filters for nonlinear estimation
tasks.

1.2.3 Topology-Aware Nonparametric Probabilistic Modeling and Filtering

Limitation: Parametric models impose assumptions on the arbitrary nature of uncertainties, yet
the past state of art has hardly given systematic consideration on nonparametric modeling and
filtering for directional domains. One preliminary trial was briefly made on discrete recursive
estimation based on discretized density in the circular domain [41]. The sequential Monte Carlo
methods are in general applicable for modeling arbitrary directional uncertainties, but a large
number of particles are typically desired due to degeneracy issues caused by high-dimensional state
spaces and strong nonlinearities (which is common for estimation on hyperspheres or composite
directional manifolds). Furthermore, a particle filter typically employs the transition prior as the
proposal, and thus disregards the newly observed evidence from the measurement [42]. This induces
deteriorated performance in challenging estimation scenarios such as those with non-stationary
models, heavy-tailed distributions and peaky likelihoods.

Contribution: We provide novel discrete modeling approaches based on hyperspherical grid
points of quasi-equidistant or mode-centric layouts [43]. The former has a uniform discretization
resolution and the latter enables a more detailed approximation around the mode of the underlying
distribution with inherent consideration on its potential antipodal symmetry. We further introduce
a generic discrete filtering scheme using Dirac mixtures of deterministic supports and customize
it w.r.t. the mode-centric grid for quaternion filtering. This pioneers a series of followup work
for grid-based spherical, toroidal and rigid body motion estimation [44–48]. Furthermore, we
establish the on-manifold unscented particle filtering scheme with showcases on unit quaternion
and unit dual quaternion manifolds [49,50]. By running a novel on-manifold UKF particlewise, the
scheme incorporates recently observed evidence into estimating the proposals. Evaluations under
challenging conditions of directional estimation show its evidently superior performance over the
parametric and basic Monte Carlo-based directional filters.

1.2.4 Efficient Discrete Probabilistic Modeling on Directional Manifolds

Limitation: Exploiting random particles is an intuitive solution to nonparametric modeling, and
the proposed particlewise on-manifold UKF leads to a considerable performance boost for filtering.
However, the innate characteristics of randomness inherently prohibits efficient approximations
of arbitrary densities. For propagating samples through the system dynamics, a given transition
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density is required, which is often derived based on the system noise represented by a parametric
model. Given numerous on-manifold samples of empirical data collected from a stochastic process,
approximating them using a parametric model may lead to a loss of useful information. A Dirac
mixture located on raw samples is information-preserving, but it lacks efficiency for discrete
probabilistic modeling and filtering.

Contribution: We propose a novel on-manifold Dirac mixture reapproximation paradigm for
efficient discrete modeling in directional domains [51, 52]. Given a source Dirac mixture with
components located at many raw samples from empirical data, it produces a target Dirac mixture
with a configurable number of components in a layout that is adapted to the shape of the
underlying unknown dispersion. For demonstration, we customize the paradigm to the unit
circle, unit hyperspheres, and manifolds of dual quaternions. Based on the customized variant
for unit hyperspheres, a two-stage reapproximation & reconstruction procedure is introduced
for a followup continuous modeling of the underlying unknown distribution in the form of von
Mises–Fisher mixtures. Furthermore, we integrate the proposed reapproximation paradigm into
the generic discrete filtering scheme and provide the on-manifold reapproximation discrete filter for
nonparametric directional estimation without given form of system noise distribution. Evaluations
for nonlinear spherical estimation show its leading performance in comparison with Monte Carlo-
based or parametric directional filters.

1.3 Related Work

In this section, we provide a brief retrospect of related work given the past state of the art within
the scope of the considered problems in this thesis.

1.3.1 Parametric Directional Estimation

Conventional directional estimation approaches rely on parametric models. Commonly used circular
distributions, among others, are the wrapped normal distribution, the von Mises distribution,
and the Bingham distribution. Popular ones for hyperspherical filtering include the von Mises–
Fisher distribution, the Bingham distribution, and the Watson distribution. Dispersion of the
Bingham distribution and the Watson distribution exhibits antipodal symmetry, with the one
of the latter being isotropic. Due to its versatility, the Bingham distribution is more of interest
for filtering applications, and the one on the unit hypersphere S3 is inherently appropriate for
modeling uncertain quaternions representing SO(3) states. For composite directional manifolds,
we only consider the products of circle/hyperspheres with Euclidean spaces such as the manifold of
unit dual quaternions. Distributions for other common composite directional domains, such as
the tori/hypertori and cylinders, are out of the scope of this thesis – related work can be found
in [12,13,53,53,54]. As briefly mentioned earlier in Sec. 1.2.1 and Sec. 1.2.2, we elaborate related
parametric modeling and filtering schemes for the considered directional domains as follows.

Parametric modeling for composite directional domains: In [55], a novel distribution was
proposed to model uncertain planar motions represented by dual quaternions in the form of
four-dimensional vectors. Parameterized by a 4× 4 matrix, the distribution inherently considers
the antipodal symmetry of dual quaternions representing SE(2) states. Essentially, the distribution
models the real part with a circular Bingham distribution, conditioned on which the dual part is
modeled by a two-dimensional Gaussian distribution (a detailed introduction follows in Sec. 2.2.3).
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Based thereon, an unscented transform-based SE(2) estimator was proposed in [56] with an
identity setting of the measurement model. For modeling uncertain dual quaternions representing
SE(3) states, a heuristic method was given in [31], where the incorporated rotation quaternion
and translation term are modeled separately by a Bingham distribution on S3 and a Gaussian
distribution in R3, respectively, without tackling the probabilistic correlation between them.

Deterministic sampling: The deterministic sampling scheme has become a default tool for facili-
tating system propagation (prediction step) or likelihood reweighting (update step) of parametric
directional filtering. Samples are drawn adaptively to the shape of the underlying distribution by
at least preserving its first and second (trigonometric) moments, inducing a series of “unscented”
directional filters (following the idea of unscented transform used in the UKF). The past existing
deterministic sampling methods for the von Mises–Fisher and Bingham distributions generate only
2 ·𝑑−1 samples on S𝑑−1 as given in [32,34], which do not include shape information of orders higher
than two. On the unit circle S1, a basic version was proposed for drawing five deterministic samples
preserving the first two trigonometric moments of typical circular distributions in closed form [57].
Meanwhile, effort has also been dedicated to drawing deterministic samples of larger sizes. By
combining scaled sample sets given by the basic UT-based version via superposition, shapes of
the circular densities can be better approximated while maintaining the first two trigonometric
moments [58]. In [59], arbitrary numbers of samples are drawn by minimizing a squared integral dis-
tance to the underlying distribution under the constraint of circular moments. In [60], deterministic
samples of configurable sizes are drawn via Voronoi quantization on circular distributions. As of the
time before our own publications, there has been no published methods of deterministic sampling
that allow freely configurable sample sizes in the sense of unscented transform for commonly used
hyperspherical distributions. Corresponding parametric filters thus suffered from deteriorated
performance in nonlinear estimation tasks due to the sample degeneracy issue.

Progressive filtering: As presented in Sec. 1.2.2, the past existing unscented hyperspherical filter-
ing methods (e.g., the unscented von Mises–Fisher or Bingham filters) only allow for measurement
models of identity form with the system noise following the same distribution as the state. Given a
non-identity measurement model, simply reweighting the deterministic samples using the likelihood
in the update step is prone to degeneracy. The progressive measurement update scheme aims
to confine the ratio of sample weights to a pregiven threshold by splitting the likelihood into a
product of likelihoods with adaptively determined exponents. The scheme has been originally
proposed and well established for nonlinear filtering in Euclidean spaces [61, 62]. In the past,
extensions to directional domains were only proposed for the unit circle [33] to tackle nonlinear
angular estimation with non-identity measurement models [33]. For filtering on hyperspheres
or composite directional domains with non-identity models, previous considerations focused on
reformulating the measurement model into the common identity setting, leading to additional
effort and approximation errors [55,56,63].

1.3.2 Nonparametric Directional Estimation

For the considered directional domains, there was no systematic investigation on nonparametric
probabilistic modeling and estimation in the past state of the art. Within the scope of this thesis,
we mainly focus on developing Dirac mixture-based discrete models and corresponding filtering
techniques. In this regard, a few relevant methods are listed as follows.
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Sequential Monte Carlo methods: Often exploited as the baseline, the sequential Monte
Carlo methods, i.e., the particle filters, are a straightforward solution to achieving nonparametric
recursive estimation on directional manifolds. Theoretically, it enables complete modeling of
arbitrary uncertainties in stochastic processes, provided that sufficiently high numbers of particles
are deployed. In practice, however, large quantities of particles are desired for nonlinear estimation
on directional manifolds that are typically high-dimensional (e.g., for quaternion or dual quaternion
estimation). To mitigate the limitation of the plain particle filtering scheme as mentioned in
Sec. 1.2.3, the unscented particle filter (UPF) [64] has been proposed for state estimation in
Euclidean spaces. Though considerable improvements were achieved for recursive estimation in
challenging scenarios, the method cannot be trivially applied to the considered directional domains
due to the underlying nonlinear topology.

Grid-based discrete Bayesian estimation: For directional domains that are compact and bounded
(e.g., circle and hyperspheres), it is intuitive to discretize the state space with grid points of a
certain layout that allows for approximating distributions of arbitrary shape. Exploiting grids
for recursive estimation has been pioneered by the well-known Wonham filter [65] for Euclidean
spaces. In the context of angular filtering, work has been done in [66], where circular distributions
are discretized by either piecewise constant densities or Dirac mixtures w.r.t. the grid points of
uniform interval on S1. An extension to recursive SE(2) estimation was further built thereupon
via Rao–Blackwellization in [41]. Though the fundamental design of grid-based discrete filtering
was established previously, adapting it to hyperspheres is not straightforward. An efficient grid
generation method on unit hyperspheres has been introduced in [67], but the (quasi-)equidistant
grid layout does not lead to memory efficiency when approximating densities of high concentration
or with additional topological structures such as the antipodal symmetry. In [68], a novel recursive
tesseract subdivision scheme was proposed for discretizing the SO(3) state space based on the
quaternion representation. The approach resembles the former equal partitioning method [67] in
the sense of uniform subdivision and additionally considers the antipodal symmetry underlying on
the rotation group. For both of the discretization methods proposed for directional state space,
there existed in the past no corresponding filtering algorithm.

Dirac mixture approximation: For certain directional manifolds that have unbounded compo-
nents, a complete grid-covering of the entire space is infeasible to achieve. Also, grid-based discrete
modeling may suffer from inefficiency as grid points of a fixed resolution and layout cannot adapt
to the shape of the underlying dispersion. Monte Carlo-based schemes may enable complete and
dispersion-adaptive discrete modeling, but they often contain redundant information due to the
randomness in particles. Thus, deterministic and dispersion-aware discrete models are appealing
for efficient nonparametric modeling and filtering. In order to achieve discrete modeling with com-
ponents of deterministic locations, effort has been first dedicated to Dirac mixture approximation
of parametric distributions in Euclidean spaces. In [69,70], the Cramér–von Mises distance (CvMD)
was generalized w.r.t. multivariate distributions by extending the classical concept of cumulative
distribution to the so-called localized cumulative distribution (LCD). A Dirac mixture is obtained
by matching an underlying Gaussian (mixture) distribution in the sense of least CvMD, with its
layout adapted to the shape of the underlying continuous density. In [71], the same methodology
was modified for optimal sample reduction. Though only proposed for Euclidean spaces, the
approach can potentially prune redundant information due to the randomness in empirical data
and be extended to the considered directional domains.
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1.4 Outline

The remainder of this thesis is structured as follows.

In Chapter 2, we first provide preliminaries about recursive Bayesian estimation in Sec. 2.1. After-
ward, typical parametric directional distributions (the von Mises–Fisher distribution, the Bingham
distribution and the SE(2)-Bingham distribution) are introduced in Sec. 2.2.1 to Sec. 2.2.3, based
on which a generic description of parametric directional filters is given in Sec. 2.2.4.

In Chapter 3, we provide a geometric investigation on the considered directional domains. As one
of the most fundamental directional manifolds, the unit hypersphere is first studied with several
important geometric tools introduced in Sec. 3.1. Based thereon, the manifolds of unit quaternions
and unit dual quaternions are introduced in Sec. 3.2 and Sec. 3.3, respectively, with a focus on their
geometric structures and engineering backgrounds (e.g., for representing rigid body motions).

In Chapter 4, methodologies of upgrading parametric modeling and filtering on directional manifolds
are introduced. To underline the contribution mentioned in Sec. 1.2.1, we showcase a parametric
modeling method for composite directional domains on the manifold of unit dual quaternions
in Sec. 4.1. Afterward, two methodologies are introduced for enhancing parametric directional
filtering corresponding to the contribution claimed in Sec. 1.2.2. First, we propose a novel scheme
for configurable deterministic sampling in Sec. 4.2 with practices on the Bingham and von Mises–
Fisher distributions in Sec. 4.2.1 and Sec. 4.2.2, respectively. Second, a progressive measurement
update scheme is introduced in Sec. 4.3 for handling nonlinear parametric directional filtering with
non-identity measurement models. Further, the two enhancements are validated by a case study
for nonlinear SO(3) estimation in Sec. 4.4.

In Chapter 5, nonparametric probabilistic modeling and filtering schemes for directional domains
are systematically established to address the considered limitation mentioned in Sec. 1.2.3. Dirac
mixtures are employed for discrete modeling of on-manifold uncertainties in a nonparametric
manner. To discretize the space of unit hyperspheres, approaches for generating hyperspherical
grids are introduced in Sec. 5.1. Afterward, an on-manifold discrete filtering scheme using Dirac
mixtures of deterministic supports is described in Sec. 5.2 including a generic design given in
Sec. 5.2.1 and a showcase on the unit quaternion manifold in Sec. 5.2.2. Furthermore, an on-
manifold unscented particle filtering scheme is established in Sec. 5.3 using Dirac mixtures of
random supports following sequential Monte Carlo methods, for which a case study for nonlinear
SE(3) estimation is given.

In Chapter 6, we propose a novel on-manifold Dirac mixture reapproximation paradigm for efficient
discrete modeling of directional uncertainties considering the limitation mentioned in Sec. 1.2.4.
We first introduce the concept of on-manifold reapproximation in Sec. 6.1 and its generic design in
Sec. 6.2. Afterward, customization of the paradigm to unit hyperspheres is elaborated in Sec. 6.3
followed by further showcases on other considered directional manifolds in Sec. 6.4. Using the
reapproximation-based discrete models on hyperspheres, a followup method is provided in Sec. 6.5
for continuous reconstruction of the underlying distribution in the form of von Mises–Fisher
mixtures. Moreover, we propose an on-manifold reapproximation discrete filtering scheme in
Sec. 6.6 for nonparametric directional estimation with unknown form of system noise, which we
evaluate in a case study for nonlinear spherical estimation.

The thesis is concluded in Chapter 7.
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CHAPTER
2

Preliminaries

In this chapter, we first give the general formulation of on-manifold recursive Bayesian estimation
in Sec. 2.1. Then, we introduce several popular parametric probabilistic models for the considered
directional domains in Sec. 2.2.1 to Sec. 2.2.3. Based thereon, a generic description of nonlinear
directional filtering algorithms is provided in Sec. 2.2.4.

2.1 Recursive Bayesian Estimation

In this thesis, we consider discrete-time stochastic systems in the following form

𝑥𝑡+1 = 𝑎(𝑥𝑡, 𝑤𝑡) , (2.1)

with system states 𝑥𝑡, 𝑥𝑡+1 ∈ M being the random variables on a certain manifold M. 𝑤𝑡 ∈ W
denotes system noise that belongs to an arbitrary domain W. Function 𝑎 : M×W→M denotes
the system model. Meanwhile, measurements are given by

𝑧𝑡 = ℎ(𝑥𝑡, 𝑣𝑡) , (2.2)

where 𝑧𝑡 ∈ Z and 𝑣𝑡 ∈ V are the measurement and the measurement noise belonging to their
individual domains, respectively. Function ℎ : M×V→ Z denotes the measurement model. Further,
we assume that the system noise term 𝑤𝑡 in (2.1) and the measurement noise term 𝑣𝑡 in (2.2) have
the probability densities 𝑓

𝑤
𝑡 and 𝑓

𝑣
𝑡 , respectively. Note that the two models above are given in

general form and are potentially nonlinear.

In general, recursive Bayesian estimation aims to obtain a posterior distribution 𝑓 e
𝑡 of the state 𝑥𝑡

at a given time step 𝑡. The estimate can be approximated by a distribution of parametric form or a
nonparametric model (e.g., in the form of Dirac mixtures). In the upcoming paragraphs, we provide
the theoretical derivations of the update and prediction steps for the recursive Bayesian estimation
initialized with an initial prior estimate 𝑓p

0 (𝑥0) at time step zero. Alongside the narrative in this
thesis, implementation of the two steps will be frequently specified according to different settings
of individual probabilistic modeling and filtering approaches.

Update step: Given a measurement 𝑧𝑡 from (2.2), the posterior density 𝑓 e
𝑡 (𝑥𝑡|𝑧1:𝑡) up to time

step 𝑡 can be obtained via updating the predicted or initialized prior density 𝑓p
𝑡 (𝑥𝑡|𝑧1:𝑡−1) according

to the Bayes’ rules [72, Sec. 10.3] in the following form

𝑓 e
𝑡 (𝑥𝑡|𝑧1:𝑡) = 𝑓L

𝑡 (𝑧𝑡|𝑥𝑡)𝑓p
𝑡 (𝑥𝑡|𝑧1:𝑡−1)∫︀

M 𝑓L
𝑡 (𝑧𝑡|𝑥𝑡)𝑓p

𝑡 (𝑥𝑡|𝑧1:𝑡−1) d𝑥𝑡

∝ 𝑓L
𝑡 (𝑧𝑡|𝑥𝑡)𝑓P

𝑡 (𝑥𝑡|𝑧1:𝑡−1) . (2.3)

Here, 𝑓L
𝑡 (𝑧𝑡|𝑥𝑡) denotes the likelihood function determined by the measurement model (2.2) and the

measurement noise density 𝑓
𝑣
𝑡 . The integral of the density product over the state 𝑥𝑡 on manifold
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M is essentially a normalization and is independent of the state. Thus, the posterior distribution
can be quantified by scaling the numerator as derived in the second stage of (2.3).

Prediction step: For predicting the prior density 𝑓p
𝑡+1(𝑥𝑡+1|𝑧1:𝑡) at time step 𝑡 + 1 from the

previous estimate 𝑓 e
𝑡 (𝑥𝑡|𝑧1:𝑡) given by (2.3), we apply the Chapman–Kolmogorov equation and

obtain
𝑓p

𝑡+1(𝑥𝑡+1|𝑧1:𝑡) =
∫︁
M

𝑓T
𝑡 (𝑥𝑡+1|𝑥𝑡)𝑓 e

𝑡 (𝑥𝑡|𝑧1:𝑡) d𝑥𝑡 . (2.4)

𝑓T
𝑡 (𝑥𝑡+1|𝑥𝑡) denotes the transition density function determined by the system model (2.1) under

system noise 𝑓
𝑤
𝑡 . For identity system models with a manifold-additive noise term, the transition

density can often be derived in a symbolic form, and the integral in (2.4) essentially denotes an
“on-manifold convolution” (𝑓𝑤

𝑡 ⊛ 𝑓 e
𝑡 )(𝑥𝑡+1) of the system noise and the previous posterior densities

(𝑓𝑤
𝑡 and 𝑓 e

𝑡 , respectively), with ⊛ being a convolution operator adapted to specific manifolds [32,34].

2.2 Parametric Filtering Based on Directional Statistics

In this section, we first provide an overview of commonly used continuous distributions from
directional statistics [12] for parametric modeling of directional random variables for the considered
domains. Based thereon, a generic description of on-manifold parametric filtering scheme is
provided for nonlinear directional estimation.

2.2.1 The von Mises–Fisher Distribution

Parameterized by the mode 𝛼 ∈ S𝑑−1 and the concentration parameter 𝜅 ≥ 0, the von Mises–Fisher
distribution 𝑥 ∼ VMF(𝛼, 𝜅) is defined on the unit hypersphere S𝑑−1 ⊂ R𝑑 (𝑑 ≥ 3) with the
probability density function (PDF) [12,73]

𝑓VMF(𝑥; 𝛼, 𝜅) = 𝑁𝑑(𝜅) · exp(𝜅 𝛼⊤𝑥) , 𝑥 ∈ S𝑑−1 . (2.5)

The normalization constant is only dependent on the concentration and follows

𝑁𝑑(𝜅) =
( ∫︁

S𝑑−1
exp(𝜅 𝛼⊤𝑥) d𝑥

)−1
= 𝜅𝑑/2−1

(2𝜋)𝑑/2I𝑑/2−1(𝜅) , (2.6)

with I𝑑/2−1 denoting the modified Bessel function of the first kind and of order 𝑑/2− 1. As shown
in (2.5), the distribution models hyperspherical uncertainties w.r.t. the arc length and exhibits
isotropic dispersion. For quantifying the expectation of von Mises–Fisher-distributed random
variables, the mean resultant vector is introduced by generalizing the trigonometric moment from
circles to hyperspheres. It is given by the formula

𝑣 = E(𝑥) =
∫︁
S𝑑−1

𝑥 · 𝑓VMF(𝑥; 𝛼, 𝜅) d𝑥 = A𝑑(𝜅) 𝛼 , with A𝑑 = I𝑑/2(𝜅)/I𝑑/2−1(𝜅) (2.7)

being a Bessel function ratio. Thus, the hyperspherical mean 𝑣 points in the direction given by 𝛼
and is of length A𝑑(𝜅) determined by the concentration 𝜅. Consequently, fitting a von Mises–Fisher
distribution given weighted hyperspherical samples {(𝑥𝑖, 𝜔𝑖)}𝑛

𝑖=1 can be performed via

�̂� = 𝑣/ ||𝑣|| and �̂� = A−1
𝑑 (𝑣) , with 𝑣 =

𝑛∑︁
𝑖=1

𝜔𝑖 𝑥𝑖 (2.8)

12
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being the mean of the samples. Computing the inverse of the Bessel function ratio A𝑑 to obtain
the concentration �̂� in (2.8) can be done efficiently using the Newton’s method given by [74]. As
justified in [Sec. A.1] [7], matching the mean resultant vector of a von Mises–Fisher distribution
produces results equivalent to those obtained via maximum likelihood estimation (MLE). For
fitting an arbitrary hyperspherical distribution to the von Mises–Fisher form, this procedure also
guarantees minimum information loss w.r.t. the Kullback–Leibler divergence [75,76].

The von Mises–Fisher distribution is a popular statistical tool for modeling uncertain hyperspherical
data [77,77,78]. However, limitations may arise when hyperspherical uncertainties are inherently of
antipodal symmetry or improper to be modeled with isotropic dispersion, e.g., for unit quaternions
representing SO(3) states. To eliminate such issues, the Bingham distribution comes into play.

2.2.2 The Bingham Distribution

The Bingham distribution 𝑥 ∼ B(M, Z) can be obtained by intersecting a zero-mean multivariate
Gaussian distribution in R𝑑 with the unit hypersphere S𝑑−1, on which a renormalization is followed
afterward. It has the following probability density function

𝑓B(𝑥) = 1
𝑁(Z) exp(𝑥⊤M Z M⊤𝑥) , 𝑥 ∈ S𝑑−1 ⊂ R𝑑 . (2.9)

The parameter matrix Z = diag(𝑧1, ... , 𝑧𝑑−1, 𝑧𝑑) controls the concentration of dispersion, with
𝑧1 ≤ · · · ≤ 𝑧𝑑−1 ≤ 𝑧𝑑 = 0 being the diagonal elements1. M ∈ R𝑑×𝑑 is a real orthogonal matrix
(thus M M⊤ = M⊤M = I𝑑×𝑑), which determines the orientation of dispersion on the hypersphere.
In practice, the parameters M and Z can be obtained via performing eigenvalue decomposition to a
negative semidefinite matrix CB ∈ R𝑑×𝑑, with CB = M Z M⊤ (the distribution can thus be denoted
as 𝑥 ∼ B(CB) for brevity as well). Afterward, eigenvalues in the diagonal matrix Z are rearranged
in ascending order with eigenvectors in M reordered correspondingly. And by convention, we
subtract the diagonal elements of Z with the largest eigenvalue to fit the definition in (2.9) (there,
𝑧𝑑 = 0). Consequently, the last column of matrix M denotes the mode of the Bingham distribution
as it corresponds to the largest diagonal element in the concentration parameter matrix Z.

As shown in (2.9), the normalization constant of the Bingham distribution is purely determined by
the concentration matrix Z. Computing the normalization constant follows

𝑁(Z) =
∫︁
S𝑑−1

exp
(
𝑥⊤M Z M⊤𝑥

)
d𝑥 =

∣∣ S𝑑−1 ∣∣ · 1F1
(
1/2, 𝑑/2, Z

)
, (2.10)

with
∣∣ S𝑑−1

∣∣ being the surface of the unit hypersphere S𝑑−1 and 1F1 the hypergeometric function of
a matrix argument, for which no closed-form formula exists [79]. For practical applications such
as quaternion filtering, efficient approaches have been proposed based on lookup tables or saddle
point approximation [17,79,80]. Further, the distribution has a mean at 0 ∈ R𝑑 and second-order
moment in the form

covB = M · diag(𝑐1, ... , 𝑐𝑑) ·M⊤ , with 𝑐𝑖 = 𝜕𝑁(Z)
𝜕𝑧𝑖

/𝑁(Z) , 𝑖 = 1, ... , 𝑑 (2.11)

denoting the diagonal entries of the matrix in the middle and fulfilling ∑︀𝑑
𝑖=1 𝑐𝑖 = 1. For any

𝑥 ∈ S𝑑−1, it is trivial to validate that 𝑓B(𝑥) = 𝑓B(−𝑥) holds. Therefore, the dispersion of the
Bingham distribution is inherently antipodally symmetric on unit hyperspheres and is directly
applicable to modeling uncertain unit quaternions belonging to S3 as elaborated in Sec. 3.2.

1 The function diag maps each input to each diagonal entry of a diagonal matrix.
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(A) VMF on S2 in Example 1.1 (B) B on S2 in Example 1.2 (C) B on S1 in Example 1.2

Figure 2.1.: Basic UT-based deterministic sampling for common parametric directional models in Example 1.

2.2.3 The SE(2)-Bingham Distribution

As a good example of topology-aware parametric models on composite directional manifolds, the
SE(2)-Bingham distribution is defined on S1×R2 ⊂ R4 (i.e., the Cartesian product of the unit circle
and the two-dimensional Euclidean space) for modeling uncertain planar motions parameterized by
dual quaternions [55]. Formulated as a four-dimensional vector 𝑥 = [ 𝑥⊤

r , 𝑥⊤
s ]⊤ ∈ R4, the so-called

planar dual quaternion represents the planar rotation with the real part 𝑥r ∈ S1 and encodes the
planar translation with the dual part 𝑥s ∈ R2 (a detailed introduction is provided in Sec. 3.3.3).
Correspondingly, the SE(2)-Bingham distribution PB(C) has the PDF

𝑓PB(𝑥) = 1
𝑁(C) exp(𝑥⊤C 𝑥) , with C =

ï
C1 C⊤

2
C2 C3

ò
(2.12)

being the parameter matrix, where C1 ∈ R2×2 is symmetric, C2 ∈ R2×2 arbitrary and C3 ∈ R2×2

symmetric negative definite. Based on the Schur complement of C3, the PDF in (2.12) can be
decomposed into

𝑓PB(𝑥) = 1
𝑁(C) exp

(
𝑥⊤

r T1 𝑥r + (𝑥s −T2 𝑥r)⊤C3 (𝑥s −T2 𝑥r)
)

, (2.13)

with T1 = C1 − C⊤
2 C−1

3 C2 and T2 = C−1
3 C2. Thus, the rotation term 𝑥r follows a Bingham

distribution parameterized by T1 and the translation term 𝑥s a conditional Gaussian distribution
N (T2 𝑥r,−0.5 C−1

3 ) [40,81]. Consequently, the normalization constant of the PDF in (2.12) follows

𝑁(C) = 2𝜋
√

det(−0.5 C−1
3 )

𝑁B(T1)
,

with 𝑁B(T1) denoting the normalization constant (2.10) of the Bingham component parameterized
by matrix T1 in (2.13). While considering the antipodal symmetry of the uncertainty underlying on
the manifold, the SE(2)-Bingham distribution also properly interprets the probabilistic correlation
between the two component domains (namely, S1 and R2).

2.2.4 Nonlinear Directional Filtering Using Parametric Models

Deterministic sampling for unscented transform: For parametric directional distributions,
sampling is almost always essential for topology-aware recursive estimation, in particular in
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origin

ground truth

predicted prior

(A) PB with 𝜆 = 1000, 𝜃 = 0 (B) PB with 𝜆 = 500, 𝜃 = 𝜋/12 (C) PB with 𝜆 = 50, 𝜃 = 𝜋/6

Figure 2.2.: Consecutive UT-based predictions with SE(2)-Bingham-distributed system noises in Example 1.3.
Yellow arrows denote samples randomly drawn from the predicted prior density whereas the green ones are
drawn deterministically [55].

scenarios with nonlinearities or composite directional domains. As random samples cannot
guarantee reproducible results and are inefficient for representing the underlying distributions,
deterministic sampling techniques have been proposed in accordance with the concept of statistical
linearization [82,83]. For typical parametric directional models, samples are drawn in the fashion
of the unscented transform [8] to match the first- and second-order moments of the underlying
distribution. The following example is provided for showcasing this basic sampling scheme practiced
on the previously introduced distributions.

Example 1: We parameterize the three parametric models in Sec. 2.2.1 to Sec. 2.2.3 as follows:

1. A von Mises–Fisher distribution VMF(𝛼, 𝜅) is defined on the unit sphere S2 with mode
𝛼 = [−1, 0, 0 ]⊤ ∈ S2 and concentration 𝜅 = 5.

2. Bingham distributions B(CB) are parameterized on the unit sphere S2 and unit circle S1 by
matrices CB = −diag(1, 20, 5) and CB = −diag(1, 5), respectively.

3. SE(2)-Bingham distributions PB(C) are configured with matrices C = −diag([ 1, 𝜆, 𝜆, 𝜆 ]),
where 𝜆 ∈ {1000, 500, 50} control concentrations of dispersion. For the configured dis-
tributions, we additionally set their modes at planar motions composing rotation angles
𝜃 ∈ { 0, 𝜋/12, 𝜋/6 } and the same translation term 𝑡 = [ 20, 20 ]⊤.

The basic UT-based sampling schemes for circular and hyperspherical distributions always draw
2 · 𝑑 − 1 samples on S𝑑−1 ⊂ R𝑑. As shown in Fig. 2.1-(A), samples are drawn from the von
Mises–Fisher distribution in an isotropic layout on the unit sphere S2 coherently to the underlying
isotropic dispersion via the method given by [34]. The Bingham distribution has non-isotropic
dispersion of antipodal symmetry. Samples are drawn according to [32] in a topology-adaptive
manner on S2 and S1 as depicted in Fig. 2.1-(B) and (C), respectively.

Using the sampling approach mentioned in [55,56], planar dual quaternion samples are obtained
from the SE(2)-Bingham distribution by combining deterministic samples separately drawn from
the Bingham and Gaussian components in (2.13) via Cartesian product. As plotted in Fig. 2.2,
we deploy the SE(2)-Bingham distributions configured in the third scenario above to an identity
planar motion model for simulating the noise term. After each time step, a predicted prior is fitted
according to the propagated deterministic samples via moment matching. The SE(2)-Bingham
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Algorithm 1: Generic Nonlinear Parametric Directional Filter
Input: prior density 𝑓p

𝑡 , measurement 𝑧𝑡, system noise density 𝑓
𝑤
𝑡

Output: predicted prior density 𝑓p
𝑡+1

/* update step */

1 {(𝜎p
𝑡,𝑖, 𝜈p

𝑡,𝑖)}𝑛
𝑖=1 ← sampleDeterminstic (𝑓p

𝑡 ) ;
2 for 𝑖← 1 to 𝑛 do
3 𝜈p

𝑡,𝑖 ← 𝜈p
𝑡,𝑖 · 𝑓L

𝑡 (𝑧𝑡|𝜎p
𝑡,𝑖) ;

4 𝑓 e
𝑡 ← matchMoment ({(𝜎p

𝑡,𝑖, 𝜈p
𝑡,𝑖)}𝑛

𝑖=1) ;
/* prediction step */

5 {(𝜎e
𝑡,𝑖, 𝜈e

𝑡,𝑖)}𝑛
𝑖=1 ← sampleDeterminstic (𝑓 e

𝑡 ) ;
6 {(𝜎w

𝑡,𝑘, 𝜈w
𝑡,𝑘)}𝑛w

𝑘=1 ← sampleDeterminstic (𝑓𝑤
𝑡 ) ;

7 for 𝑖← 1 to 𝑛 do
8 for 𝑘 ← 1 to 𝑛w do
9 𝜎p

𝑡+1,𝑟 ← 𝑎 (𝜎e
𝑡,𝑖, 𝜎w

𝑡,𝑘) ;
10 𝜈p

𝑡+1,𝑟 ← 𝜈e
𝑡,𝑖 · 𝜈w

𝑡,𝑘 ;

11 𝑓p
𝑡+1 ← matchMoment ({(𝜎p

𝑡+1,𝑟, 𝜈p
𝑡+1,𝑟)}𝑛·𝑛w

𝑟=1 ) ;
12 return 𝑓p

𝑡+1 ;

distribution is able to model the uncertain rotation and translation individually, meanwhile the
probabilistic correlation between the two components is interpreted.

Parametric directional filtering scheme: As showcased in Example 1.3 by the procedure of
obtaining predicted priors, parametric directional filters are typically operated in a sampling–
matching pattern for nonlinear estimation tasks. To concretize this concept, we show a generic
description for directional estimation using parametric models according to the derivation in
Sec. 2.1.

As shown in Algorithm 1, given the prior density 𝑓p
𝑡 from the initialization or previous step, we

first draw (weighted) deterministic samples {(𝜎p
𝑡,𝑖, 𝜈p

𝑡,𝑖)}𝑛
𝑖=1 according to the specific form of the

parametric model as shown in Example 1 (Algorithm 1, line 1). We assume that a likelihood
function can be obtained from the measurement model in (2.2), which we exploit to reweight the
prior samples given the current measurement 𝑧𝑡 (Algorithm 1, lines 2–3). Afterward, the posterior
density 𝑓 e

𝑡 is obtained via moment-matching to the reweighted prior samples (Algorithm 1, line 4).
In the upcoming prediction step, we first perform deterministic sampling on the posterior density
given by the update step and the noise density 𝑓

𝑤
𝑡 . (Algorithm 1, lines 5–6). The two sample

sets are then combined via Cartesian product and propagated through the system model in (2.1)
(Algorithm 1, lines 7–10). The resulting prior sample sets are then moment-matched according to
the parametric form of the state distribution, and the predicted prior density 𝑓p

𝑡+1 is then obtained
(Algorithm 1, line 11).

In the past state of the art, parametric directional filters are usually tailored w.r.t. the specific forms
of system or measurement models. For instance, the measurement model is typically assumed to be
identity, with measurements restricted to the manifold of the state. Therefore, measurement models
and the measurement noise distributions need to be adapted to the identity setting, leading to faster
measurement update (often in closed form without sampling) but also additional approximation
error. Directly reweighting the basic UT-based deterministic samples with their likelihoods derived
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from the original measurement model induces degeneracy even under mild nonlinearities due to
limited sample sizes. To address such issues, we will introduce several enhancements in Chapter 4.
Before that, we first give a systematic geometric investigation in the upcoming chapter on several
important directional manifolds, which are highly relevant to engineering practices of directional
estimation.
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CHAPTER
3

Geometric Investigation on Directional Manifolds

In this chapter, we start off by investigating the hyperspherical geometry in Sec. 3.1, which
plays a fundamental role in constructing composite directional manifolds. Then, we specify unit
hyperspheres to the unit quaternion manifold in Sec. 3.2, based on which the unit dual quaternion
manifold is further introduced in Sec. 3.3 to illustrate approaches to inspecting directional manifolds
composing Euclidean spaces (including the degenerate case of planar dual quaternions). Note both
of the two directional variables are well-established approaches to representing rigid body motions,
which we also exploit recurrently to construct nonlinear estimation scenarios for showcasing the
filtering schemes proposed later. Knowledge about other directional domains such as tori and
hypertori is not detailed in this thesis, for which we refer to related literature in [12,47,53].

3.1 Hyperspherical Geometry

A unit hypersphere is a compact and bounded Riemannian manifold with constant curvature [84]. In
this section, we perform a geometric investigation on unit hyperspheres using common analysis tools
from Riemannian geometry [85,86]. At the end of this section, we showcase the introduced geometric
tools on the circular Bingham distribution and discuss their potential usage for probabilistic
modeling and filtering of directional random variables.

3.1.1 Exponential and Logarithm Maps on Unit Hyperspheres

Given an arbitrary point 𝑣 ∈ S𝑑−1 ⊂ R𝑑 on the unit hypersphere, a hyperspherical tangent space
T𝑣S𝑑−1 ⊂ R𝑑 can be located on it [84]. Any point 𝑥 ∈ S𝑑−1 can be mapped to T𝑣S𝑑−1 via the
logarithm map

�̃� = Log𝑣(𝑥) =
(
𝑥− cos(𝛾) 𝑣

) 𝛾

sin(𝛾) ∈ T𝑣S𝑑−1 , with 𝛾 = arccos(𝑣⊤𝑥) , (3.1)

while preserving its geodesic curve length to 𝑣, namely, ‖Log𝑣(𝑥)‖ = 𝛾. Inversely, any point
�̃� ∈ T𝑣S𝑑−1 can be retracted back to the hyperspherical manifold via the exponential map

𝑥 = Exp𝑣(�̃�) = cos(‖�̃�‖)𝑣 + sin(‖�̃�‖)
‖�̃�‖

�̃� ∈ S𝑑−1 . (3.2)

Points in the tangent space T𝑣S𝑑−1 can also be expressed locally w.r.t. an orthonormal basis E𝑣

via �̃�𝜄 = E⊤
𝑣 �̃� ∈ R𝑑−1, where columns of matrix E𝑣 are basis vectors of E𝑣. Expressed w.r.t. E𝑣,

hyperspherical points undergoing the logarithm map in (3.1) essentially form a (𝑑 − 1)-ball of
radius 𝜋, namely, �̃�𝜄 ∈ B𝑑−1

𝜋 ⊂ R𝑑−1, which is bounded by the hypersphere S𝑑−2
𝜋 of radius 𝜋.
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3.1.2 Projections on Unit Hyperspheres

Mapping points from a unit hypersphere S𝑑−1 to its tangent space T𝑣S𝑑−1 at an arbitrary point
𝑣 ∈ S𝑑−1 can also be performed via projections [87]. Among others, we introduce two types of
mapping approaches, the orthographic and gnomonic projections, and their inverse operations, the
orthographic and gnomonic retractions, respectively.

Orthographic projection and retraction: The orthographic projection projects a point 𝑥 ∈ S𝑑−1

to the tangent space T𝑣S𝑑−1 orthogonally [35]. Mathematically, the operation is expressed as

�̃� = Po
𝑣 (𝑥) = 𝑥− (𝑣⊤𝑥) 𝑣 ∈ T𝑣S𝑑−1 , ∀𝑥 ∈ S𝑑−1 .

Inversely, any point �̃� ∈ T𝑣S𝑑−1 can be retracted back to the underlying hypersphere via

𝑥 = Ro
𝑣(�̃�) = �̃� +

√
1− ‖�̃�‖2 𝑣 ∈ S𝑑−1 , ∀�̃� ∈ T𝑣S𝑑−1 .

Gnomonic projection and retraction: Intuitively, the gnomonic projection shoots a line from
the origin through the given hyperspherical point 𝑥 ∈ S𝑑−1 and takes the line intersection with the
tangent space T𝑣S𝑑−1 as the output [35]. This procedure can be formulated as

�̃� = Pg
𝑣 (𝑥) = 𝑥

𝑣⊤𝑥
− 𝑣 ∈ T𝑣S𝑑−1 , ∀𝑥 ∈ S𝑑−1 . (3.3)

Correspondingly, the gnomonic retraction follows

𝑥 = Rg
𝑣(�̃�) = 𝑣 + �̃�

‖𝑣 + �̃�‖
∈ S𝑑−1 , ∀�̃� ∈ T𝑣S𝑑−1 , (3.4)

which essentially normalizes the coordinates of point 𝑣 + �̃�. The following example provides
an illustration of bridging a directional manifold with its tangent space for a circular Bingham
distribution using the aforementioned logarithm/exponential maps and the projection-based
mapping approaches.

Example 2: Similar to Example 1.2, we configure a Bingham distribution B(C) on the unit circle
with C = −diag(1, 2). As shown in Fig. 3.1, we first draw samples using the basic UT-based
deterministic sampling method in [32] (shown as black dots on S1). Afterward, we establish the
tangent plane T𝑚S1 at the Bingham mode 𝑚 ∈ S1 (drawn as a gray line, the one at its antipode is
discarded) and map the samples drawn on the same side to it using the three mapping approaches
introduced previously. As shown in the plot, the logarithm map preserves the arc length from the
samples to the mode in the tangent space. Expressed w.r.t. the local basis of the tangent plane
T𝑚S1, the orthographic projection outputs a bounded range of [−1, 1 ] ⊂ R1, whereas an unbounded
output domain is theoretically guaranteed by the gnomonic projection given circular inputs.

As shown in Example 2, the aforementioned mapping approaches can all in theory facilitate
in-tangent-space interpretation of on-manifold uncertainties. Suppose a Gaussian distribution
is defined in the tangent space at a certain point on S𝑑−1, and it is retracted back to the unit
hypersphere via one of the three maps above to quantify the underlying uncertainty. It is then
evident that the commonly used exponential map [11] induces a warped distribution on S𝑑−1,
and the orthographic retraction truncates the in-tangent-space dispersion orthogonally to the
hypersphere due to the bounded input range. Therefore, both phenomena lead to problematic
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Figure 3.1.: Hyperspherical geometry illustrated on the unit circle S1 with a Bingham distribution.

interpretation of on-manifold uncertainties and can only be practically employed under certain
assumptions (e.g., local perturbation). The gnomonic projection/retraction, however, provide (so
far) a theoretically sound solution to bridging a directional manifold and its tangent spaces for
probabilistic modeling.

3.2 Unit Quaternion Manifold

By convention, a quaternion 𝑥 is defined as 𝑥 = 𝑥0 + 𝑥1 i + 𝑥2 j + 𝑥3 k with i, j, k being the basic
quaternions that fulfill i2 = j2 = k2 = ijk = −1. For the sake of conciseness, we write quaternions
in vector form 𝑥 = [ 𝑥0, 𝑥1, 𝑥2, 𝑥3 ]⊤ ∈ R4 and exploit matrix-vector operations for expressing
quaternion arithmetic in this thesis.

3.2.1 Quaternion Arithmetic and SO(3) State Representation

The product of two quaternions is computed via the Hamilton product ⊗, in which the basis
elements are multiplied under the distributive law [88]. In accordance with the vector formulation,
the Hamilton product can also be expressed via ordinary matrix-vector multiplications. For instance,
given two arbitrary quaternions 𝑟 = [ 𝑟0, 𝑟1, 𝑟2, 𝑟3 ]⊤ and 𝑠 = [ 𝑠0, 𝑠1, 𝑠2, 𝑠3 ]⊤, their Hamilton product
can be expressed as 𝑟 ⊗ 𝑠 = Q⌞

𝑟 𝑠 = Q⌟
𝑠 𝑟, with

Q⌞
𝑟 =


𝑟0 −𝑟1 −𝑟2 −𝑟3
𝑟1 𝑟0 −𝑟3 𝑟2
𝑟2 𝑟3 𝑟0 −𝑟1
𝑟3 −𝑟2 𝑟1 𝑟0

 and Q⌟
𝑠 =


𝑠0 −𝑠1 −𝑠2 −𝑠3
𝑠1 𝑠0 𝑠3 −𝑠2
𝑠2 −𝑠3 𝑠0 𝑠1
𝑠3 𝑠2 −𝑠1 𝑠0

 (3.5)

being the left and right representations of quaternions 𝑟 and 𝑠, respectively [50]. Moreover, the
norm of a quaternion 𝑟 is given as

√
𝑟 ⊗ 𝑟*, where 𝑟* = [ 𝑟0,−𝑟1,−𝑟2,−𝑟3 ]⊤ denotes the conjugate

of 𝑟. Consequently, quaternions of unit norm are called unit quaternions.
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As a reparameterization of the axis–angle representation, unit quaternions have become a popular
tool for representing spatial rotations belonging to the special orthogonal group SO(3). Given a
spatial rotation around an axis 𝑛 through an angle 𝜃, it can be represented by a unit quaternion
defined as

𝑟 = [ cos(𝜃/2) , 𝑛⊤ sin(𝜃/2) ]⊤ , (3.6)

where the rotation axis 𝑛 is of unit length, i.e., 𝑛 ∈ S2. Any point 𝑣 ∈ R3 can be rotated to 𝑣′ by
the rotation parameterized in 𝑟 according to

𝑣′ =
(
𝑟 ⊗ [ 0, 𝑣⊤ ]⊤ ⊗ 𝑟*)

2:4 . (3.7)

We augment the vector 𝑣 with a scalar term of zero to its quaternion form for compatibility with
the Hamilton product and use the operator (·)2:4 to extract the last three elements of a quaternion
to recover the rotated vector. By reformulating the quaternion rotation law in (3.7) using the
matrix expressions in (3.5), we obtain

𝑟 ⊗ [ 0, 𝑣⊤ ]⊤ ⊗ 𝑟* = (Q⌟
𝑟)⊤Q⌞

𝑟 [ 0, 𝑣⊤]⊤ , with (Q⌟
𝑟)⊤Q⌞

𝑟 =
ï

1 03×1
01×3 Rr

ò
, (3.8)

where Rr ∈ SO(3) denotes the SO(3) matrix representing an identical rotation. Therefore, we have
𝑣′ = Rr 𝑣.

3.2.2 Geometric Structure of Unit Quaternion Manifold

According to the definition of quaternion norm in Sec. 3.2.1, unit quaternions are also of unit length
when expressed as vectors in the four-dimensional Euclidean space. Therefore, they are confined
to the unit hypersphere S3 ⊂ R4. As shown in (3.7), two antipodally symmetric unit quaternions
𝑥 and −𝑥 represent the same spatial rotation. Thus, the unit hypersphere S3 is a double covering
of the SO(3) group. Therefore, the geometric tools introduced in Sec. 3.1 for unit hyperspheres
are also applicable to the manifold of unit quaternions. For instance, the logarithm map in (3.1)
operated at the identity quaternion 1 = [ 1, 0, 0, 0 ]⊤ ∈ S3 boils down to

Log1(𝑥) = [ 0 ,
𝜃

2 𝑛⊤ ]⊤ ∈ T1S3 , (3.9)

with 𝑥 = [ cos(𝜃/2), 𝑛⊤ sin(𝜃/2)]⊤ ∈ S3 being an arbitrary unit quaternion as defined in (3.6).

For any unit quaternion, its matrix expressions respecting the Hamilton product in (3.5) inherently
belong to the four-dimensional special orthogonal group SO(4), namely, Q∘

𝑥(Q∘
𝑥)⊤ = (Q∘

𝑥)⊤Q∘
𝑥 =

I4×4 and det(Q∘
𝑥) = 1 (the superscript ∘ summarizes the left ⌞ and right ⌟ superscripts) [35,43].

Thus, the Hamilton product of unit quaternions essentially denotes four-dimensional rotations,
under which the manifold S3 is closed. Furthermore, the inverse of a unit quaternion 𝑥 is
identical to its conjugate, i.e., 𝑥−1 = 𝑥*, with corresponding matrix representations fulfilling
Q∘

𝑥−1 = (Q∘
𝑥)−1 = (Q∘

𝑥)⊤.

As indicated in (3.7) and (3.9), the manifold of unit quaternions representing SO(3) states con-
tains the additional topological structure of antipodal symmetry compared with the ordinary S3.
Therefore, unit quaternions undergoing the logarithm map w.r.t. a local basis of the tangent space
form a ball B3

𝜋/2 of radius 𝜋/2. This is different from the finding for ordinary unit hyperspheres
stated in Sec. 3.1.1, where the ball is equipped with a radius of 𝜋.
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(A) B(C1) on S2 (B) B(C2) on S2

Figure 3.2.: Parallel transport of the Bingham principal basis on S2 in Example 3. The cross ‘×’ denotes the
mode of the underlying distribution. For each configured distribution shown in column (A) and (B), coordinate
systems with basis vectors pointing along the principal curves stay parallel w.r.t. the connection on different
spherical trajectories.

From the perspective of Riemannian geometry, the four-dimensional rotation enabled by the
Hamilton product also corresponds to the concept of parallel transport on S3 [89]. Based thereon,
logarithm and exponential maps at an arbitrary quaternion 𝑣 ∈ S3 can be transferred to the
identity quaternion 1 ∈ S3 and operated according to (3.9), namely,

�̃� = Log𝑣(𝑥) = 𝑣 ⊗ Log1(𝑣−1 ⊗ 𝑥) ∈ T𝑣S𝑑−1 ,

𝑥 = Exp𝑣(�̃�) = 𝑣 ⊗ Exp1(𝑣−1 ⊗ �̃�) ∈ S𝑑−1 .
(3.10)

In [26], we proposed a novel parametric approach for modeling uncertain dual quaternions in a
topology-aware manner. There, the Hamilton product is exploited to transfer coordinate systems
respecting principal curves of the underlying Bingham distribution to arbitrary points on S3 via
the hyperspherical parallel transport. To give an intuitive illustration of this procedure, we provide
the following brief example based on spherical Bingham distributions.
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Example 3: We configure two Bingham distributions B(C1) and B(C2) as in Sec. 2.2.2 with

C1 = −diag(1, 2, 3) and C2 = −
[

5 0.1 0.2
0.1 1 0.1
0.2 0.1 1

]
,

respectively. As pointed out in [35, 36], the column vectors of the matrix M in (2.9) naturally
provide an orthonormal basis of R𝑑 in accordance with principal curves of the underlying dispersion
(namely, the Bingham principal basis that will be elaborated shortly after in Sec. 3.3.2).

As shown in Fig. 3.2, we depict this local basis at the mode of the distribution and perform parallel
transport to it along an arbitrarily given smooth curve on S2. Drawn in the same color, the basis
vectors pointing along the same principal curve (in blue and red) stay parallel with each other on
S2 w.r.t. the connection on different trajectories. Meanwhile, vectors stay orthogonal to each other
throughout parallel transports on the sphere.

3.3 Unit Dual Quaternion Manifold

A dual quaternion is defined as 𝑥 = 𝑥r + 𝜖𝑥s, with quaternions 𝑥r and 𝑥s being the real and dual
parts, respectively [90]. 𝜖 denotes the dual unit which satisfies 𝜖2 = 0. By concatenating the real
and dual parts, dual quaternions can be formulated into the vector form 𝑥 = [ 𝑥⊤

r , 𝑥⊤
s ]⊤. The

Corresponding arithmetic of dual quaternions is then a combination of the quaternion arithmetic
and the dual number theory [26]. In this section, a concise introduction of basic dual quaternion
operations is first provided, after which the manifold of unit dual quaternions will be investigated
in the context of SE(3) state representation.

3.3.1 Dual Quaternion Arithmetic and SE(3) State Representation

Similar to quaternions, the mutiplication of two arbitrary dual quaternions 𝑥 = [ 𝑥⊤
r , 𝑥⊤

s ]⊤ and
𝑦 = [ 𝑦⊤

r , 𝑦⊤
s ]⊤ can be expressed as ordinary matrix-vector multiplications, namely, 𝑥 ⊠ 𝑦 = Q⌜

𝑥 𝑦 =
Q⌝

𝑦 𝑥, with

Q⌜
𝑥 =
ñ

Q⌞
𝑥r

04×4
Q⌞

𝑥s
Q⌞

𝑥r

ô
, Q⌝

𝑦 =
ñ

Q⌟
𝑦r

04×4

Q⌟
𝑦s

Q⌟
𝑦r

ô
. (3.11)

Here, Q⌜
𝑥 and Q⌝

𝑦 denote the matrix representations of the dual quaternions when multiplied from
left- and right-hand sides, respectively. The norm of a dual quaternion 𝑥 is defined as

√
𝑥 ⊠ 𝑥*,

with 𝑥* = [ (𝑥*
r )⊤, (𝑥*

s)⊤]⊤ being the classical conjugate of the dual quaternion 𝑥 (obtained by
conjugating the quaternions of real and dual parts individually) [26].

For representing the six-DoF rigid body motion, a dual quaternion 𝑥 = [ 𝑥⊤
r , 𝑥⊤

s ]⊤ can be defined,
with its real part being a unit quaternion parameterizing a rotation of angle 𝜃 around axis 𝑛 ∈ S2

and its dual part encoding a spatial translation 𝑡 ∈ R3 in the form

𝑥r = [ cos(𝜃/2) , 𝑛⊤ sin(𝜃/2) ]⊤ and 𝑥s = 0.5 [ 0, 𝑡⊤]⊤ ⊗ 𝑥r , (3.12)

respectively. In the dual part 𝑥s, the translation term 𝑡 is combined with the real part 𝑥r via the
Hamilton product. Given any point 𝑣 ∈ R3, it can be transformed by a dual quaternion defined in
(3.12) according to

𝑣′ =
(
𝑥 ⊠ [ 1, 0, 0, 0, 0, 𝑣⊤]⊤ ⊠ 𝑥⊙)

6:8 , (3.13)
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with 𝑥⊙ = [ (𝑥*
r )⊤,−(𝑥*

s )⊤ ]⊤ denoting the full conjugate (conjugating both the dual unit 𝜖 and the
two component quaternions) of 𝑥. The operator ()6:8 is hereby applied to recover the transformed
points by extracting the last three entries of its coordinates in the form of dual quaternion. A
proof of (3.13) has been given in [26, Appendix D]. The operation has a similar formulation to
performing a rotation using a unit quaternion in (3.7). With both the rotation and translation
terms parameterized together in an eight-dimensional vector, dual quaternions exhibit no ambiguity
(compared with Euler angle-based representations) and much less redundancy than the well-known
4× 4 transformation matrices. Also, similar to the antipodal symmetry of unit quaternions, a dual
quaternion 𝑥 and its antipode −𝑥 represent the same rigid body motion as indicated by (3.13).

3.3.2 Geometric Structure of Unit Dual Quaternion Manifold

Dual quaternions of unit norm, i.e., the unit dual quaternions, are confined to the following
manifold embedded in the eight-dimensional Euclidean space

DH1 =
{

[ 𝑥⊤
r , 𝑥⊤

s ]⊤
∣∣𝑥r ∈ S3, 𝑥⊤

r 𝑥s = 0
}
⊂ R8 . (3.14)

A proof of the manifold definition above is provided in Appendix A.1. Moreover, dual quaternions
representing SE(3) states naturally fulfill the constraints of unit norm and are therefore located on
the manifold DH1 (a proof is provided in Appendix A.2). The two additional constraints imposed
on the eight-dimensional vector in (3.14) also cohere with the fact that the rigid body motions
have six DoF. Geometrically speaking, the real part of any unit dual quaternion is located on the
unit hypersphere S3, whereas the dual part is perpendicular to the real part. In other words, given
any unit dual quaternion 𝑥 = [ 𝑥⊤

r , 𝑥⊤
s ]⊤, the dual part belongs to the tangent space at the real

part on the unit hypersphere, namely, 𝑥s ∈ T𝑥r
S3.

Composing the unit hypersphere with the Euclidean space in a covariant manner, the unit dual
quaternion manifold will be later exploited to showcase probabilistic modeling and filtering for
composite directional domains. Investigating its geometric structure is nontrivial since the dual
part is coupled with the real part located on a nonlinear manifold. Therefore, we aim to decouple
this nonlinear relationship between the real and dual parts, and more precisely, to express the dual
part in a local basis of the tangent space at the real part, such that modeling the dual part can be
executed in a linear fashion. Selection of an orthonormal basis spanning the tangent space T𝑥r

S3 is
theoretically arbitrary. For the operational convenience of on-manifold probabilistic modeling and
filtering, we introduce two methods for establishing local bases of T𝑥r

S3 in accordance with the
manifold structure of DH1 [26, 35,37,50].

Bingham principal basis: As introduced in Sec. 2.2.2, the Bingham distribution is commonly
used for parametric modeling of uncertain unit quaternions [32,36] and can thus be exploited for
modeling the real part of unit dual quaternions [26]. Given a quaternion Bingham distribution
B(M, Z) on S3, the parameter matrix M = [ 𝑚1, 𝑚2, 𝑚3, 𝑚 ] ∈ R4×4 that controls the orientation of
dispersion is real orthogonal1, with each column pointing along a principal curve of the distribution.
Therefore, the first three columns of M naturally provide an orthonormal basis of the tangent
space at the mode of the distribution on S3, namely,

T𝑚S3 = Span(EB
m) , with EB

m = {𝑚1, 𝑚2, 𝑚3} (3.15)
1 As introduced in Sec. 2.2.2, columns of M is adjusted according to their corresponding concentrations in ascending order

with the last one indicating the Bingham mode.
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denoting the so-called Bingham principal basis (BPB)2. We concatenate the basis vectors column
wise into a matrix EB

m = [ 𝑚1, 𝑚2, 𝑚3 ] ∈ R4×3 such that any point �̃� ∈ T𝑚S3 can be expressed
w.r.t. EB

m in its local coordinates via �̃�𝜄 = (EB
m)⊤�̃�. Moreover, we have (EB

m)⊤EB
m = I3×3, given that

matrix M is real orthogonal.

As introduced in Example 3 and Fig. 3.2, the BPB can be transferred from the Bingham mode
𝑚 ∈ S3 to any given quaternion 𝑥r ∈ S3 via hyperspherical parallel transport. On S3, this procedure
can be conveniently implemented via the SO(4) rotation induced by the Hamilton product, namely,

EB
xr = Q⌞

𝑥r⊗𝑚−1EB
m = Q⌞

𝑥r
(Q⌞

𝑚)⊤EB
m , (3.16)

as proposed in [26]. Thus, (3.16) provides a realization to characterizing the Bingham dispersion at
any location on S3 while preserving its principal curve directions in the sense of parallel transport.
Exploiting the transported BPB to span a tangent space on S𝑑−1 essentially endows the in-tangent-
space geometric structure with interpretation of the on-manifold uncertainty. For probabilistic
modeling on composite directional manifolds, this provides a solution to establishing the probabilistic
correlation between the hyperspherical and linear component domains (an introduction is detailed
in Sec. 4.1).

Based on any orthonormal basis of the tangent space at 𝑥r ∈ S3, the orthographic projection to
T𝑥r

S3 in Sec. 3.1.2 can be transformed to multiplication with the corresponding projection matrix.
Without loss of generality, the projection matrix w.r.t. T𝑥r

S3 can be obtained using the transported
BPB in (3.16) according to

Pxr = EB
xr(E

B
xr)

⊤ ∈ R4×4 . (3.17)

Given any 𝑣 ∈ R4, its projected coordinates on T𝑥r
S3 follow 𝑣 = Pxr𝑣 ∈ T𝑥r

S3. Furthermore, it is
trivial to verify that (EB

xr)⊤EB
xr = I3×3 and 𝑥r𝑥

⊤
r + Pxr = I4×4 hold.

Quaternion concomitant basis: As introduced in Sec. 3.2, the matrix representations of unit
quaternions shown in (3.5) belong to the SO(4) group. Taking the last three columns from matrix
Q∘

𝑥𝑟
(either left- or right-hand expressions) given a unit quaternion 𝑥r ∈ S3, we obtain one pair of

quaternion concomitant bases (QCBs)3, namely,

T𝑥r
S3 = Span(A∘

xr) , with A∘
xr = {𝑒1, 𝑒2, 𝑒3} and Q∘

𝑥r
=: [ 𝑥r, 𝑒1, 𝑒2, 𝑒3 ] . (3.18)

We also concatenate basis vectors in Axr column wise into a matrix A∘
xr ∈ R4×3 and obtain

Q∘
𝑥r

= [ 𝑥r, A∘
xr ], with (A∘

xr)⊤A∘
xr = I3×3, because Q∘

𝑥𝑟
∈ SO(4). When expressing the dual part of a

unit dual quaternion representing a SE(3) state as defined in (3.12) w.r.t. the QCB A⌟
xr , we obtain

a scaled translation term 𝑡 according to the following formula [50]

𝑡 = (2 𝑥s ⊗ 𝑥−1
r )2:4 = 2 (A⌟

xr)
⊤𝑥s .

3.3.3 Planar Dual Quaternions Representing SE(2) States

For parameterizing planar rigid body motions belonging to the SE(2) group, unit dual quaternions
can be employed in a degenerate form. In this thesis, we name dual quaternions representing SE(2)
states as planar dual quaternions.

2 For brevity, we write an orthonormal basis E𝑚 at 𝑚 as Em (same for E𝑚 and Em).
3 The name indicates that the basis inherently comes along with a quaternion and does not rely on external settings.
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More specifically, a planar motion is conventionally composed of a rotation around the 𝑧-axis
and a translation 𝑡 = 𝑡𝑥 i + 𝑡𝑦 j on the 𝑥–𝑦 coordinate plane. For parameterizations using dual
quaternions, the real part is defined as the quaternion 𝑥r = cos(𝜃/2) + k sin(𝜃/2) and is expressed
in the vector form 𝑥r = [ cos(𝜃/2), sin(𝜃/2) ]⊤ ∈ S1 ⊂ R2. The dual part is defined in a specified
form for the planar case according to (3.12), namely,

𝑥s = 1
2 𝑡⊗ 𝑥r = 1

2Q⌟
𝑥r

𝑡 , with Q⌟
𝑥r

=
ï

𝑥𝑟,1 𝑥𝑟,2
−𝑥𝑟,2 𝑥𝑟,1

ò
(3.19)

being the right-matrix representation of the real part by customizing (3.5) w.r.t. planar rotations [40,
81]. Therefore, planar dual quaternions in the form 𝑥 = [ 𝑥⊤

r , 𝑥⊤
s ]⊤ belong to the Cartesian product

of the unit circle and the two-dimensional Euclidean space, i.e., 𝑥 ∈ S1 ×R2 ⊂ R4 [40,81]. For two
arbitrary planar dual quaternions 𝑥 = [ 𝑥0, 𝑥1, 𝑥2, 𝑥3 ]⊤ and 𝑦 = [ 𝑦0, 𝑦1, 𝑦2, 𝑦3 ]⊤, their product can
be derived by modifying (3.11) as 𝑥 ⊠ 𝑦 = Q⌜

𝑥 𝑦 = Q⌝
𝑦 𝑥, with

Q⌜
𝑥 =


𝑥0 −𝑥1 0 0
𝑥1 𝑥0 0 0
𝑥2 𝑥3 𝑥0 −𝑥1
𝑥3 −𝑥2 𝑥1 𝑥0

 and Q⌝
𝑦 =


𝑦0 −𝑦1 0 0
𝑦1 𝑦0 0 0
𝑦2 −𝑦3 𝑦0 𝑦1
𝑦3 𝑦2 −𝑦1 𝑦0

 (3.20)

being the left- and right-matrix representations of 𝑥 and 𝑦, respectively. For any point 𝑣 ∈ R2, it
can be transformed by a given planar dual quaternion 𝑥 = [ 𝑥0, 𝑥1, 𝑥2, 𝑥3 ]⊤ according to

𝑣′ =
(

𝑥 ⊠ [ 1, 0, 𝑣⊤]⊤ ⊠ 𝑥⊙
)

3:4
, (3.21)

with 𝑥⊙ being the full conjugate of 𝑥 for the planar case. Here, 𝑣 is first converted into the form of
a planar dual quaternion, and the operator ()3:4 extracts the last two entries of a vector to recover
the transformed coordinates 𝑣′ ∈ R2.

Exploiting dual quaternions to represent planar motions enables modeling rotations and translations
simultaneously in a joint vector space. Based on this concise form, a PDF was proposed in [55]
for modeling uncertain planar dual quaternions while inherently considering the probabilistic
correlation between the real and dual parts. The distribution has been introduced in Sec. 2.2.3 and
depicted in Fig. 2.2.
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CHAPTER
4

On-Manifold Upgrade for
Parametric Directional Filtering

Considering the limitations mentioned in Sec. 1.2.1 and Sec. 1.2.2, we aim to upgrade parametric
probabilistic modeling and filtering on directional manifolds in this chapter. More specifically,
three generic methodologies are introduced: (1) topology-aware modeling in composite directional
domains based on hyperspherical parallel transport in Sec. 4.1, (2) on-manifold configurable
deterministic sampling for parametric directional models (such as the von Mises–Fisher distribution
and the Bingham distribution) in Sec. 4.2, and (3) deterministic progressive update for nonlinear
directional estimation with non-identity measurement models in Sec. 4.3. We showcase the first
upgrade on the manifold of unit dual quaternions. Furthermore, the latter two enhancements are
validated in a simulated scenario of quaternion-based nonlinear SO(3) estimation in Sec. 4.4.

4.1 Upgrade I: Parametric Modeling for Composite Directional Domains

One of the key problems of parametric modeling on composite directional manifolds is to consider
the correlation across individual component domains in a topology-aware manner. The methods
introduced here are tailored to unit hyperspheres combined with Euclidean spaces through a
Cartesian product. Other types of composite directional manifolds, e.g., tori and hypertori, are
out of the scope of this thesis. For demonstration, we explicitly consider the unit dual quaternion
manifold introduced in Sec. 3.3.2 throughout this section.

4.1.1 Bingham–Gaussian Modeling Scheme Based on Parallel Transport

Given an arbitrary unit dual quaternion 𝑥 = [ 𝑥⊤
r , 𝑥⊤

s ]⊤ ∈ DH1 as defined in (3.14), we decompose
its underlying probability density as

𝑓(𝑥r, 𝑥s) = 𝑓(𝑥r)𝑓(𝑥s|𝑥r) , (4.1)

where the real part is assumed to be Bingham-distributed, namely, 𝑥r ∈ B(Mr, Zr), with Mr
indicating its principal curve directions as shown by (3.15). For modeling the conditional part
𝑥s ∈ T𝑥r

S3, we first express it w.r.t. a local basis1 Er of T𝑥r
S3 for decoupling from the nonlinear

real part and obtain its local coordinates 𝑥𝜄
s = E⊤

r 𝑥s ∈ R3. The choice of the local basis is in theory
arbitrary. We thus take this chance and design a basis Er with consideration of the hyperspherical
dispersion such that its probabilistic correlation with the uncertainty in the coupled Euclidean

1 We denote Exr in Sec. 3.3.2 as Er in this chapter for brevity.
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space can be established. As proposed in [26], we set up the Bingham principal basis EB
r at 𝑥r

using the hyperspherical parallel transport (HPT) enabled by the Hamilton product as introduced
in (3.16). Based thereon, the conditional density in (4.1) follows

𝑓(𝑥s|𝑥r) =
∫︁
R3

𝑓(𝑥s, 𝑥𝜄
s|𝑥r) d𝑥𝜄

s

=
∫︁
R3

𝑓(𝑥s|𝑥𝜄
s, 𝑥r)𝑓(𝑥𝜄

s|𝑥r) d𝑥𝜄
s

=
∫︁
R3

𝛿(𝑥s − EB
r 𝑥𝜄

s)𝑓(𝑥𝜄
s|𝑥r) d𝑥𝜄

s.

(4.2)

Since the dual part 𝑥s is in the tangent space at 𝑥r ∈ S3, a multiplication with the projection matrix
in (3.17) does not change its coordinates, i.e., 𝑥s = Pr 𝑥s. Following the multivariate extension of
the Dirac delta function [91], we have

𝛿(𝑥s − EB
r 𝑥𝜄

s) = 𝛿
(
Pr𝑥s − EB

r 𝑥𝜄
s
)

= 𝛿
(
EB

r (EB
r )⊤𝑥s − EB

r 𝑥𝜄
s
)

= det
(
(EB

r )⊤EB
r
)−0.5 · 𝛿(𝑥𝜄

s − (EB
r )⊤𝑥s) .

(4.3)

For the basis matrix EB
r ∈ R4×3, (EB

r )⊤EB
r = I3×3 holds as introduced in Sec. 3.3.2. We thus obtain

𝛿(𝑥s − EB
r 𝑥𝜄

s) = 𝛿
(
𝑥𝜄

s − (EB
r )⊤𝑥s

)
for (4.3). As a result, (4.2) is reduced to

𝑓(𝑥s|𝑥r) =
∫︁
R3

𝛿
(
𝑥𝜄

s − (EB
r )⊤𝑥s

)
𝑓(𝑥𝜄

s|𝑥r) d𝑥𝜄
s = 𝑓

(
(EB

r )⊤𝑥s|𝑥r
)
.

Consequently, the density in (4.1) can be rewritten as

𝑓(𝑥r, 𝑥s) = 𝑓(𝑥r)𝑓
(
(EB

r )⊤𝑥s|𝑥r
)

,

with EB
r representing the BPB transferred from the Bingham mode 𝑚 ∈ S3 to 𝑥r ∈ S3 via HPT.

By further assuming that the conditioned dual part expressed w.r.t. basis EB
r follows a Gaussian

distribution in R3, namely, (EB
r )⊤𝑥s ∼ N (𝜏 s, Σs), the probabilistic correlation between the real and

dual parts is interpreted. Consequently, the parallel transport-based Bingham–Gaussian (PTBG)
modeling scheme is established on the unit dual quaternion manifold DH1 in a topology-aware
manner.

In principle, the PTBG scheme proposed for the unit dual quaternion manifold is applicable to
any directional domain constructed in a similar fashion. In this regard, certain modifications
might be necessary, such as choosing a variable-specific hyperspherical PDF and a domain-specific
implementation of the hyperspherical parallel transport (here handily done by the quaternion
product). Another approach to the considered problem is to marginalize out the linear state
variable conditioned on the hyperspherical state variable via the Rao–Blackwellization, which is
well-established for marginalized particle filters [92]. Though this methodology has more popularity
for nonparametric filtering, it may also have good potential for adaption to parametric modeling
for the considered composite directional domains. Based on the theoretical setup of the PTBG
scheme above, we further propose the following preliminary techniques to pave its way to recursive
estimation on the unit dual quaternion manifold.

Parameter matching: Given a set of weighted unit dual quaternion samples {(𝑥𝑖, 𝜈𝑖)}𝑛
𝑖=1 with

𝑥𝑖 = [ 𝑥⊤
𝑖,r, 𝑥⊤

𝑖,s ]⊤ ∈ DH1 and weights fulfilling ∑︀𝑛
𝑖=1 𝜈𝑖 = 1, parameters of the Bingham and

Gaussian components of the PTBG scheme can be matched as detailed in Algorithm 2 [26]. We
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Algorithm 2: Parameter Matching for PTBG Scheme
Input: weighted sample set {(𝑥𝑖, 𝜈𝑖)}𝑛

𝑖=1
Output: Bingham component density 𝑓B(Mr, Zr), Gaussian component density 𝑓N (𝜏 s, Σs)

1 𝑓B ← matchBingham ({(𝑥𝑖,r, 𝜈𝑖)}𝑛
𝑖=1) ;

2 [ EB
m, 𝑚 ]←Mr ;

3 for 𝑖← 1 to 𝑛 do
4 EB

r,𝑖 ← Q⌞
𝑥𝑖,r

(Q⌞
𝑚)⊤EB

m ; // see (3.16)

5 𝑥𝜄
𝑖,s ← (EB

r,𝑖)⊤𝑥𝑖,s ;
6 𝜏 s ←

∑︀𝑛
𝑖=1 𝜈𝑖 𝑥𝜄

𝑖,s ;
7 Σs ←

∑︀𝑛
𝑖=1 𝜈𝑖 (𝑥𝜄

𝑖,s − 𝜏 s) (𝑥𝜄
𝑖,s − 𝜏 s)⊤ ;

8 return 𝑓B(Mr, Zr), 𝑓N (𝜏 s, Σs) ;

Algorithm 3: Deterministic Sampling for PTBG Scheme
Input: Bingham component density 𝑓B(Mr, Zr), Gaussian component density 𝑓N (𝜏 s, Σs)
Output: weighted sample set {(𝑥𝑖, 𝜈𝑖)}𝑛

𝑖=1
1 {(𝑥𝑗,r, 𝜈𝑗,r)}𝑛r

𝑗=1 ← sampleDeterminstic (𝑓B) ;
2 {(𝑥𝜄

𝑘,s, 𝜈𝑘,s)}𝑛s
𝑘=1 ← sampleDeterminstic (𝑓N ) ;

3 [ EB
m, 𝑚 ]←Mr ;

4 for 𝑗 ← 1 to 𝑛r do
5 EB

r,𝑗 ← Q⌞
𝑥𝑗,r

(Q⌞
𝑚)⊤EB

m ; // see (3.16)

6 for 𝑘 ← 1 to 𝑛s do
7 𝑥𝑘,s ← EB

r,𝑗 𝑥𝜄
𝑘,s ;

8 𝑥𝑖 ← [ 𝑥⊤
𝑗,r, 𝑥⊤

𝑘,s ]⊤ ;
9 𝜈𝑖 ← 𝜈𝑗,r · 𝜈𝑘,s ;

10 return {(𝑥𝑖, 𝜈𝑖)}𝑛r·𝑛s
𝑖=1 ;

first approximate the Bingham density using all weighted real-part samples as proposed in [32],
after which the BPB is extracted from the obtained parameter matrix Mr (Algorithm 2, lines
1–2). For each sample 𝑥𝑖, we span the tangent space at its real part T𝑥𝑖,r

S3 with the local BPB
basis EB

r,𝑖 as given in (3.16), w.r.t. which the dual part 𝑥𝑖,s is expressed in its local coordinates 𝑥𝜄
𝑖,s

(Algorithm 2, lines 3–5). We then collect all the rotation-invariant dual parts {𝑥𝜄
𝑖,s}𝑛

𝑖=1, based on
which the parameters of the Gaussian component are obtained (Algorithm 2, lines 6–7).

Deterministic sampling: As discussed in Algorithm 1, deterministic samples are typically required
in system propagation or measurement update by parametric directional filters for most nonlinear
estimation tasks. Given a set of PTBG parameters, we provide the deterministic sampling scheme
formulated in Algorithm 3 [26]. As shown in lines 1–2, weighted deterministic samples are first
drawn individually from the Bingham and Gaussian components with cardinalities 𝑛r and 𝑛s,
respectively. Afterward, we establish the local BPB for the tangent space at each real part sample
𝑥𝑗,r ∈ S3, where all the Gaussian samples {𝑥𝜄

𝑘,s}𝑛s
𝑘=1 w.r.t. the local basis EB

r,𝑗 are transformed to
their global coordinates (Algorithm 3, lines 3–9). The combination of the real and dual parts
is done in the fashion of Cartesian product, thereby resulting in overall 𝑛r · 𝑛s samples on the
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(A) (B)

Figure 4.1.: Random and deterministic unit dual quaternion samples drawn according to the two PTBG
configurations in Example 4 (shown from different view angles in column (A) and (B)). Yellow and blue arrows
depict random and deterministic samples, respectively, whereas the red one denotes the mode.
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Figure 4.2.: Consecutive PTBG-based predictions on DH1 (viewed from two different angles). Random and
deterministic samples are depicted by yellow and green arrows, respectively.

manifold of unit dual quaternions. We showcase the PTBG modeling scheme on DH1 with different
configurations in the following example.

Example 4: Two PTBG configurations are provided. The Bingham components B(C) are parame-
terized in the concise form given in Sec. 2.2.2 with C ∈ {−diag(5, 100, 8, 100),−diag(1, 50, 50, 50)},
thus having both modes at the identity quaternion 1 = [ 1, 0, 0, 0 ]⊤ ∈ S3. Additionally, we manipu-
late the mode of the second distribution to be a unit quaternion parameterizing a spatial rotation
of angle 𝜋/12 around axis [ 1, 15, 1 ]⊤ (after normalization) according to (3.6). For the Gaussian
components N (𝜏 s, Σs), we set

𝜏 s ∈
{

[ 15, 15, 0 ]⊤, [−15, 5, 0 ]⊤
}

and Σs ∈

{
diag(1, 2, 3) ,

[
2 0.2 0.3

0.2 1 0.1
0.3 0.1 5

]}
.

As shown in Fig. 4.1, random (yellow) and deterministic (blue) samples are drawn according to the
two PTBG configurations in column (A) and (B) (each viewed from different angles). Unit dual
quaternion samples are visualized by transforming an initial orientation vector [ 1, 0, 0 ]⊤ at the
origin according to (3.13). We use the basic UT-based methods for deterministic sampling of the
Bingham and Gaussian components [8, 32,93], thereby leading to a cardinality of 49 for the dual
quaternion sample sets. We also combine the Bingham and Gaussian modes for showing modes of
the sample sets (depicted in red). It is evident that the PTBG scheme is able to model uncertain
translations and rotations simultaneously with consideration of their correlations.

Based on the proposed deterministic sampling and parameter matching approaches, a PTBG-
based prediction step can be established for recursive estimation on DH1 by following the basic
sampling–matching scheme given in Sec. 2.2.4. We briefly demonstrate this procedure in Fig. 4.2
using an identity system model 𝑥𝑡+1 = 𝑥𝑡 ⊠ 𝑢 ⊠ 𝑤𝑡, where we assume a constant step-wise
input 𝑢 ∈ DH1 parameterizing a rotation of angle 𝜋/4 around the axis 1/

√
3 · [ 1, 1, 1 ]⊤ and a

translation [ 15, 15, 15 ]⊤. The system noise is simulated by the proposed PTBG scheme with a
configuration of the Bingham component B(−diag(1, 400, 400, 400)) and the Gaussian component
N (03, 0.1 · I3×3). Four consecutive prediction steps are simulated. With reference to the ground
truth, the sampling–matching-based system propagation functions effectively.
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Algorithm 4: Measurement Fusion for PTBG Scheme
Input: prior density 𝑓p

B and 𝑓p
N , noise density 𝑓

𝑣
B and 𝑓

𝑣
N , measurement 𝑧

Output: posterior density 𝑓 e
B and 𝑓 e

N
1 𝑓 e

B(Me
r, Ze

r)← fuseBingham (𝑓p
B , 𝑓

𝑣
B , 𝑧r) ; // see [32]

2 {𝑥𝑖,r}𝑛r
𝑖=1 ← sampleDeterministic (𝑓 e

B) ; // equally weighted

3 𝑓 e
N ← 𝑓p

N ;
4 [ EB

m, 𝑚 ]←Me
r ;

5 for 𝑖← 1 to 𝑛r do
6 EB

r,𝑖 ← Q⌞
𝑥𝑖,r

(Q⌞
𝑚)⊤EB

m ; // see (3.16)

7 𝑧𝜄
s ← (EB

r,𝑖)⊤𝑧s ;
8 𝑓 e

N ← updateUKF (𝑓 e
N , 𝑓

𝑣
N , 𝑧𝜄

s) ;
9 return 𝑓 e

B, 𝑓 e
N ;

(A) rotation error (B) translation error

Figure 4.3.: Consecutive measurement fusion using a PTBG-based identity model under different noise levels.

Measurement fusion with identity measurement model: As the next building block for PTBG-
based recursive estimation, we propose a basic method for measurement fusion as formulated in
Algorithm 4. Currently, it only considers an identity measurement model in the form 𝑧𝑡 = 𝑥𝑡 ⊠ 𝑣𝑡.
As shown in line 1, the real part 𝑧r of the measurement 𝑧 = [ 𝑧⊤

r , 𝑧⊤
s ]⊤ is first fused into the prior

Bingham density 𝑓p
B to obtain the its posterior 𝑓 e

B as given in [32]. Afterward, we draw deterministic
samples {𝑥𝑖,r}𝑛r

𝑖=1 from the posterior Bingham density 𝑓 e
B (Algorithm 4, line 2). At each quaternion

sample 𝑥𝑖,r ∈ S3, a tangent space is spanned by its local BPB EB
r,𝑖 obtained via HPT, w.r.t. which

the dual part 𝑧s of the measurement 𝑧 is fused into the Gaussian component via an ordinary UKF
update [8] (Algorithm 4, lines 3–8). We validate the proposed measurement fusion method in a
simulated scenario in the following example.

Example 5: We simulate the hidden state of the unit dual quaternion signal according to 𝑥 = 𝑥0⊠𝑤.
For that, we synthesize the noise term 𝑤 according to the PTBG scheme with the Bingham
and Gaussian components parameterized as 𝑓

𝑤
B (−diag(1, 400, 400, 400)) and 𝑓

𝑤
N (03, 0.002 · I3×3),

respectively. An additional offset 𝑥0 is added, which represents a rotation of angle 𝜋/3 around the
axis 1/

√
3 · [ 1, 1, 1 ]⊤ followed by a translation [ 5, 4, 6 ]⊤. Given an identity measurement model

𝑧 = 𝑥⊠ 𝑣, we model the noise term 𝑣 under the scheme of PTBG with the Bingham and Gaussian
components configured as 𝑓

𝑣
B(−diag(1, 1/𝑎, 2/𝑎, 3/𝑎)) and 𝑓

𝑣
N (03, 𝑎 · I3×3), respectively. Here, 𝑎 ∈
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{0.1, 0.01, 0.001} control the measurement noise levels (a larger 𝑎 gives a larger uncertainty). For
initializing the prior estimate, we exploit a PTBG configuration with the Bingham and Gaussian
components parameterized as 𝑓p

B(−diag(1, 500, 500, 500)) and 𝑓p
N (03, 0.001 · I), respectively. We

perform measurement fusion for 50 consecutive steps with 200 Monte Carlo runs and record
estimation errors for rotation (in radians) and translation after each step w.r.t. the ground truth.

As depicted in Fig. 4.3, the averaged estimation errors converge over fusion steps for both rotation
and translation. Also, a lower measurement noise level induces faster convergence. This validates
the efficacy of the proposed measurement fusion method under the identity setting.

4.2 Upgrade II: Configurable Deterministic Sampling

As introduced in Sec. 2.2.4, deterministic samples are drawn in a reproducible manner and carry
information of the underlying distribution more efficiently for nonlinear estimation compared
with random samples. In the past state of the art, deterministic sampling for parametric models
on hyperspheres S𝑑−1 could only be performed with a fixed sample size fully determined by the
dimension 𝑑 while preserving the first- and second-order moments of the underlying distribution. To
improve the performance of parametric directional filtering in nonlinear estimation tasks, we propose
the configurable deterministic sampling (CDS) methodology to generate deterministic samples of
manually-configurable sizes. The obtained samples fulfill the moment constraints, meanwhile they
approximate higher-order shape information of the underlying dispersion. As shown in related own
publications [35–37], we concretize this methodology for two typical hyperspherical distributions,
namely, the von Mises–Fisher distribution of isotropic dispersion and the Bingham distribution
that has antipodally symmetric and non-isotropic dispersion.

4.2.1 Flexible Deterministic Sampling for Bingham Distributions

In [69, 70, 94], approaches have been proposed for deterministic Dirac mixture approximation
(DMA) of Gaussian distributions in the sense of least Cramér–von Mises distance based on the
concept of the localized cumulative distribution (LCD)2. Deterministic samples are drawn to
optimally approximate the shape of a Gaussian distribution while preserving its moments up to the
second order for UT-based filtering. As it can be executed efficiently [95] thanks to its closed-form
derivations, this methodology has brought profound improvement for nonlinear estimation in
Euclidean spaces [96].

The key idea of establishing the flexible deterministic sampling (FDS) for a Bingham distribution
(introduced in Sec. 2.2.2) is: (1) approximating the hyperspherical dispersion with a Gaussian
distribution in the tangent space T𝑚S𝑑−1 at the mode 𝑚 w.r.t. the BPB, (2) performing LCD-based
deterministic sampling on the approximate model and retracting the obtained samples back to the
manifold, and (3) on-manifold layout correction to the freshly retracted samples for fulfilling the
moment constraints. As introduced in own publications [35] and [36], this idea has been tried out
progressively – first along the principal curves, then on the whole hypersphere. We hereby only
elaborate the procedure of the latter since the former is a degenerate version following the same
methodology.

Given a Bingham distribution B(M, Z) as defined in (2.9) on the unit hypersphere S𝑑−1, its
parameter matrix M can be expressed column wise as M := [ 𝑚1, 𝑚2, ... , 𝑚𝑑−1, 𝑚 ], with the last

2 An on-manifold version of the Cramér–von Mises distance will be elaborated in Chapter 6.
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column being the mode and the rest composing the BPB EB
m = {𝑚𝑖}𝑑−1

𝑖=1 spanning the tangent
space T𝑚S𝑑−1 as introduced in Sec. 3.3.2. Since samples are first to be drawn from a Gaussian
distribution by means of the LCD-based DMA unbounded in T𝑚S𝑑−1 w.r.t. the BPB, we exploit
the gnomonic projection in (3.3) to interpret the on-manifold density in the tangent space.

Expressed w.r.t. the BPB, points in the tangent space T𝑚S𝑑−1 essentially form the Euclidean space
R𝑑−1. Given any point �̃�𝜄 ∈ R𝑑−1 expressed w.r.t. the BPB of T𝑚S𝑑−1, we transform it to its global
coordinates and pick the on-manifold density value via gnomonic retraction. Mathematically, this
procedure can be formulated as

𝑓B(�̃�𝜄) = 1
𝑁B

exp
((
Rg

𝑚(EB
m �̃�𝜄)

)⊤M Z M⊤Rg
𝑚(EB

m �̃�𝜄)
)

, with �̃�𝜄 ∈ R𝑑−1 .

Taking the definition of the gnomonic retraction Rg
𝑚 in (3.4), we then obtain

𝑓B(�̃�𝜄) = 1
𝑁B

exp
ß(𝑚 + EB

m �̃�𝜄)⊤M Z M⊤(𝑚 + EB
m �̃�𝜄)

‖𝑚 + EB
m �̃�𝜄‖2

™
. (4.4)

As introduced in Sec. 3.3.2, the transformation matrix EB
m ∈ R𝑑×(𝑑−1) denoting the BPB EB

m is
given by M = [ EB

m, 𝑚 ] and fulfills (EB
m)⊤EB

m = I(𝑑−1)×(𝑑−1). Also, the Bingham concentration
matrix is given in the form Z = diag(𝑧1, ... , 𝑧𝑑−1, 0) by definition. Thus, we have (EB

m)⊤M =
(EB

m)⊤[ EB
m, 𝑚 ] = [ I(𝑑−1)×(𝑑−1), 0𝑑−1 ] ∈ R(𝑑−1)×𝑑 and 𝑚⊤M = [ 0⊤

𝑑−1, 1 ] ∈ R1×𝑑 for the numerator in
the exponent of (4.4). Meanwhile, the denominator in the exponent of (4.4) follows ‖𝑚+EB

m �̃�𝜄‖2 =
(𝑚 + EB

m �̃�𝜄)⊤(𝑚 + EB
m �̃�𝜄) = 1 + ‖�̃�𝜄‖2. Therefore, (4.4) can be reduced to

𝑓B(�̃�𝜄) = 1
𝑁B

exp
Å(�̃�𝜄)⊤ diag(𝑧1, ... , 𝑧𝑑−1) �̃�𝜄

1 + ‖�̃�𝜄‖2

ã
.

The density expressed above is not a PDF in R𝑑−1. However, as shown in [36], its shape can be
approximated by a scaled Gaussian distribution in R𝑑−1, from which 𝑛 arbitrary deterministic
samples {�̃�𝜄

𝑖}𝑛
𝑖=1 can be drawn via the LCD-based DMA. Afterward, the samples are transformed to

global coordinates and mapped back to the manifold via the gnomonic retraction 𝜎𝑖 = Rg
𝑚(EB

m �̃�𝜄
𝑖) ∈

S𝑑−1. For typical scenarios of hyperspherical estimation, we set samples to be equally weighted.

The next step is to correct the freshly retracted samples according to the requirement of the
unscented transform, namely, to yield a sample covariance that is identical to the covB in (2.11) of
the underlying Bingham distribution. For this, we formulate an optimization problem based on
the Frobenius norm to minimize the difference of the two covariance matrices. It follows

S* = arg min
S∈OB(𝑑,𝑛)

∥∥S S⊤/𝑛− covB
∥∥2

F , with S = [ 𝜎1, ... , 𝜎𝑛 ]

concatenating the retracted samples {𝜎𝑖}𝑛
𝑖=1 column wise. Since all samples are confined to the

unit hypersphere S𝑑−1 ⊂ R𝑑, matrix S belongs to the oblique manifold OB(𝑑, 𝑛) ⊂ R𝑑×𝑛 [85].
As recommended in [36], the optimization problem can be efficiently solved by the Riemannian
steepest descent method implemented in [86]. To demonstrate the efficacy of the proposed FDS
approach for Bingham distributions (including the one in [35] proposed for sampling on principal
curves), we now provide an example.

Example 6: We perform the proposed FDS method for Bingham distributions B(C) (defined in
the concise form given in Sec. 2.2.2) of different parameterizations. Due to the antipodal symmetry
of dispersion, the configured sample sizes refer only to the semicircle or hemisphere.

36



4.2. Upgrade II: Configurable Deterministic Sampling
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Figure 4.4.: FDS for Bingham distributions on S1 in Example 6.1.
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Figure 4.5.: FDS on principal curves for Bingham distributions on S2 in Example 6.2.
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Figure 4.6.: FDS on the whole sphere for Bingham distributions on S2 in Example 6.3.

1. On the unit circle S1, we parameterize Bingham distributions with parameter matrices C ∈
{−diag(1, 2),−diag(1, 6)}. Sample sizes are given as 𝑛 ∈ {5, 10, 20, 50}.

2. Another two Bingham distributions are further parameterized on the unit sphere S2 with
C ∈ {−diag(1, 6, 6),−diag(1, 6, 12)}. We first perform FDS of its original version proposed
in [35], with (𝑛1, 𝑛2) ∈ {(4, 4), (10, 10), (20, 20), (50, 50)} denoting the sample sizes along the
two principal curves of Bingham distributions.

3. We exploit the previous setting of Bingham distributions and perform FDS on the whole sphere
using the variant elaborated in this section according to [36], with 𝑛 ∈ {20, 100, 300, 500} being
the sample sizes.

As shown in Fig. 4.4, Fig. 4.5 and Fig. 4.6, samples are drawn from different Bingham distributions
given various configurations and mirrored to their antipodes. The proposed FDS scheme is able
to generate deterministic samples of layouts adaptive to the shape of dispersion underlying on the
manifold while fulfilling the moment constraints. Moreover, a comparison between the sampling
results in Fig. 4.5 and Fig. 4.6 clearly hints that the FDS-variant on the whole hypersphere de-
livers a better sample covering of Bingham distributions on S𝑑−1 (𝑑 ≥ 3), especially for the area
between principal curves that interprets the correlation. Therefore, this variant is recommended for
deployment to nonlinear hyperspherical estimation.

4.2.2 Isotropic Deterministic Sampling for von Mises–Fisher Distributions

Another important parametric distribution modeling directional random variables is the von
Mises–Fisher distribution as introduced in Sec. 2.2.1 [6, 12]. Defined on the unit hypersphere
S𝑑−1 ⊂ R𝑑 as illustrated in Fig. 2.1-(A), the distribution has isotropic dispersion. The conventional
deterministic sampling in the past [34] only produces 2 · 𝑑 − 1 samples that preserve the mean
resultant vector in (2.7) of the underlying distribution. In this section, we introduce a new sampling
method proposed in [37, 38] to obtain configurable numbers of deterministic samples that preserve
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Algorithm 5: Isotropic Deterministic Sampling (IDS) for von Mises–Fisher Distributions
Input: VMF(𝛼, 𝜅), number of orbits 𝑛1, on-orbit resolution 𝑛2
Output: sample set X

1 X← 𝛼 ;
2 E𝛼 ← getBasisTangentSpace (𝛼) ;
3 {�̃�𝜄

𝑗}
𝑛2
𝑗=1 ← HEP (S𝑑−2, 𝑛2) ;

4 𝜆← computeInterval (𝑛1, 𝑛2, 𝜅) ;
5 for 𝑘 ← 1 to 𝑛1 do
6 for 𝑗 ← 1 to 𝑛2 do
7 X← X ∪ Exp𝛼(𝑘𝜆 E𝛼 �̃�𝜄

𝑗) ;

8 return X ;

(A) (B) (C)

Figure 4.7.: Illustration of isotropic deterministic sampling procedure for von Mises–Fisher distributions.

the mean resultant vector and approximate higher-order shape information of the underlying von
Mises–Fisher distribution.

Considering that a von Mises–Fisher distribution VMF(𝛼, 𝜅) has isotropic dispersion, we design
the layout of the sample set to also be isotropic. As shown in Fig. 4.7, we put one sample at the
location of its mode 𝛼 ∈ S𝑑−1 and call it the sun sample. It is surrounded by 𝑛1 hyperspherical
orbits of uniform interval 𝜆, with 𝑛2 planet samples placed (quasi-)equidistantly on each of them.
Thus, a sample set X ⊂ S𝑑−1 of cardinality 𝑛1 · 𝑛2 + 1 is produced. Similar to the case of the FDS
on Bingham distributions, we set all samples to be equally weighted. The uniform interval 𝜆 for
arranging the hyperspherical orbits is determined in a way to preserve the mean resultant vector
of VMF(𝛼, 𝜅). Before deriving it, we first give an overview of the proposed isotropic deterministic
sampling (IDS) method in Algorithm 5 as follows.

As shown in Fig. 4.7-(A), the mode 𝛼 of the distribution is first set as the sun sample (Algorithm 5,
line 1). The tangent space T𝛼S𝑑−1 is established at the mode with E𝛼 denoting a local basis of it3

(Algorithm 5, line 2). As introduced in Sec. 3.1.1, points on the unit hypersphere S𝑑−1 undergoing
the logarithm map to a tangent space form the ball B𝑑−1

𝜋 bounded by the hypersphere S𝑑−2
𝜋 ⊂ R𝑑−1

of radius 𝜋 w.r.t. its local basis. As depicted in Fig. 4.7-(A), we first apply the hyperspherical equal
3 A matrix E𝛼 ∈ R𝑑×(𝑑−1) concatenates basis vectors of E𝛼 column wise and fulfills E⊤

𝛼 E𝛼 = I(𝑑−1)×(𝑑−1).
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partitioning (HEP) algorithm from [67] to S𝑑−2 for obtaining 𝑛2 on-orbit (quasi-)equidistant planet
samples {�̃�𝜄

𝑗}
𝑛2
𝑗=1 ⊂ S𝑑−2 (Algorithm 5, line 3). Suppose the interval 𝜆 is obtained (Algorithm 5,

line 4), the equidistant grid points are scaled on each orbit of 𝑘 = 1, ... , 𝑛1 according to 𝜆 and
afterward transformed to global coordinates by E𝛼 (Fig. 4.7-(B)). Then, they are retracted back to
S𝑑−1 via the exponential map in (3.2) (Fig. 4.7-(C) and Algorithm 5, lines 5–7). Mathematically,
this procedure follows

𝑥𝑘,𝑗 = Exp𝛼(𝑘 𝜆 E𝛼 �̃�𝜄
𝑗) = cos(𝑘𝜆) 𝛼 + sin(𝑘𝜆) E𝛼 �̃�𝜄

𝑗 ∈ S𝑑−1 ,

with 𝑥𝑘,𝑗 being the 𝑗-th sample on the 𝑘-th hyperspherical orbit on S𝑑−1. Taking both planet and
sun samples, we derive their hyperspherical mean to be the form

𝑣 = 1
𝑛1𝑛2 + 1

Å
𝛼 +

𝑛1∑︁
𝑘=1

𝑛2∑︁
𝑗=1

𝑥𝑘,𝑗

ã
= 1

𝑛1𝑛2 + 1

Å
𝛼 +

𝑛1∑︁
𝑘=1

𝑛2∑︁
𝑗=1

(
cos(𝑘𝜆) 𝛼 + sin(𝑘𝜆) E𝛼�̃�𝜄

𝑗

)ã
.

Given that the grid point set {�̃�𝜄
𝑗}

𝑛2
𝑗=1 drawn by the HEP proposed in [67] is (numerically) zero-

centered for typical IDS configurations, we thus have

𝑣 = 1
𝑛1𝑛2 + 1

(
1 + 𝑛2

𝑛1∑︁
𝑘=1

cos(𝑘𝜆)
)

𝛼 .

By imposing the constraint of the mean resultant vector, namely, 𝑣
!= A𝑑(𝜅) 𝛼, the condition of

the unscented transform [34] is fulfilled, and we further obtain
𝑛1∑︁

𝑘=1
cos(𝑘𝜆) = (𝑛1𝑛2 + 1)A𝑑(𝜅)− 1

𝑛2
.

The finite series on the left-hand side of the equation above refers to Lagrange’s trigonometric
identity [97, Sec. 2.4.1.6]. Considering this fact, we have

sin
(
(𝑛1 + 0.5)𝜆

)
2 sin(0.5 𝜆) = (𝑛1𝑛2 + 1)A𝑑(𝜅)− 1

𝑛2
+ 1

2 ,

with the left-hand side taking the form of a scaled Dirichlet kernel [98], which we denote as J𝑛1(𝜆).
Computing 𝜆 then boils down to solving the equation

J𝑛1(𝜆) = (𝑛1𝑛2 + 1)A𝑑(𝜅)− 1
𝑛2

+ 1
2 , with J𝑛1(𝜆) =

sin
(
(𝑛1 + 0.5)𝜆

)
2 sin(0.5 𝜆) , 𝜆 ∈ [ 0, 𝜋/𝑛1 ] . (4.5)

The scaled Dirichlet kernel J𝑛1(𝜆) obtains its maximum at 𝜆 = 0 with J𝑛1(0) = 𝑛1 + 0.5. Since
the Bessel function ratio A𝑑(𝜅) is in the range of (0, 1) for concentration 𝜅 > 0, the value on the
right-hand side of (4.5) is less than J𝑛1(0). Thus, (4.5) is solvable in non-analytic form. For that,
we provide a numerical solver by tailoring Newton’s method to the problem at hand in Appendix B.
The following example further showcases the proposed IDS method applied to von Mises–Fisher
distributions on S2 of different configurations.

Example 7: We set up von Mises–Fisher distributions VMF([ 0, 0, 1 ]⊤, 𝜅) on the unit sphere
S2 with different concentrations 𝜅 ∈ {0.4, 3, 5}. For each configuration, we perform IDS with
resolutions of (𝑛1, 𝑛2) ∈ {(3, 12), (6, 12), (12, 12), (12, 24)}.

As shown in Fig. 4.8, deterministic samples are drawn in dispersion-adaptive layouts, meanwhile
mean resultant vectors of the underlying von Mises–Fisher distributions are preserved.
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𝜅
=

0.
4

(𝑛1, 𝑛2) = (3, 12) (𝑛1, 𝑛2) = (6, 12) (𝑛1, 𝑛2) = (12, 12) (𝑛1, 𝑛2) = (12, 24)
𝜅

=
3

𝜅
=

5

Figure 4.8.: IDS for von Mises–Fisher distributions on S2 in Example 7.

4.3 Upgrade III: Deterministic Progressive Update

In most directional estimation tasks, measurement models as shown in (2.2) are of non-identity form,
namely, the measurement 𝑧𝑡 and the state 𝑥𝑡 belong to different domains, with each following its own
respective distribution [31,39]. For the basic nonlinear filtering scheme in Algorithm 1, deterministic
samples {𝑥p

𝑡,𝑖}𝑛
𝑖=1 drawn from the prior density (obtained via initialization or prediction) are

reweighted by their likelihoods {𝑓L
𝑡 (𝑧𝑡 |𝑥p

𝑡,𝑖)}𝑛
𝑖=1 given the measurement 𝑧𝑡. Though the UT-based

deterministic sampling schemes have been largely improved by enabling configurable sample sizes
as introduced in Sec. 4.2, such a rudimentary update step may still suffer from sample degeneracy
issue under strong nonlinearities or peaky likelihoods. As a straightforward demonstration of this
issue, Fig. 4.9 is plotted with a von Mises–Fisher prior density (of concentration 𝜅 = 5) updated
by a relatively peaky likelihood density function4. Though overall 21 deterministic samples are
drawn for the measurement update via the IDS proposed in Sec. 4.2.2 (resolution configured as
(𝑛1, 𝑛2) = (2, 10)), the prior samples are still prone to degenerate after a single-step reweighting
with a huge ratio of the largest to the smallest weight.

As mentioned in Sec. 1.3.1, this issue can be mitigated by exploiting the progressive update scheme
that was originally proposed for linear state spaces [61,62] and previously evaluated on the circular
domain [33]. Based on own publications [38–40], we hereby extend this scheme to generic directional

4 Another von Mises–Fisher distribution of 𝜅 = 50 is deployed as measurement noise for demonstration purposes.
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Figure 4.9.: Illustration of a single-step update for a von Mises–Fisher filter using isotropic deterministic
samples of resolution (𝑛1, 𝑛2) = (2, 10). Samples are plotted with sizes proportional to their weights after being
reweighted by their likelihoods.

Algorithm 6: On-Manifold Deterministic Progressive Update
Input: prior density 𝑓p

𝑡 , measurement 𝑧𝑡, threshold 𝜖
Output: posterior density 𝑓 e

𝑡

1 𝑓 e
𝑡 ← 𝑓p

𝑡 ;
2 Δ← 1, 𝑘 ← 1 ;
3 while Δ > 0 do
4 {𝑥𝑘,𝑖}𝑛

𝑖=1 ← CDS (𝑓 e
𝑡 , 𝑛) ; // distribution-specific

5 {𝜔𝑘,𝑖}𝑛
𝑖=1 ← {𝑓L

𝑡 (𝑧𝑡|𝑥𝑘,𝑖)}𝑛
𝑖=1 ; // element-wise assignment

6 𝜔min
𝑘 ← min ({𝜔𝑘,𝑖}𝑛

𝑖=1) ;
7 𝜔max

𝑘 ← max ({𝜔𝑘,𝑖}𝑛
𝑖=1) ;

8 Δ𝑘 ← min
(
Δ, log(𝜖)/ log(𝜔min

𝑘 /𝜔max
𝑘 )

)
;

9 {𝜔𝑘,𝑖}𝑛
𝑖=1 ← {(𝜔𝑘,𝑖)Δ𝑘}𝑛

𝑖=1 ; // element-wise assignment

10 𝑓 e
𝑡 ← matchMoment ({𝑥𝑘,𝑖}𝑛

𝑖=1, {𝜔𝑘,𝑖}𝑛
𝑖=1) ; // distribution-specific

11 Δ← Δ−Δ𝑘 ;
12 𝑘 ← 𝑘 + 1 ;
13 return 𝑓 e

𝑡 ;

domains in conjunction with the configurable deterministic sampling scheme introduced in Sec. 4.2.
The resulting deterministic progressive update step is derived as follows.

We substitute 𝑓p
𝑡 (𝑥𝑡) in (2.3) with a Dirac mixture supported by deterministic samples {𝑥p

𝑡,𝑖}𝑛
𝑖=1 of

size 𝑛 drawn from the prior density, namely, 𝑓p
𝑡 (𝑥𝑡) = ∑︀𝑛

𝑖=1 𝜈p
𝑡,𝑖 𝛿(𝑥𝑡 − 𝑥p

𝑡,𝑖) and obtain

𝑓 e
𝑡 (𝑥𝑡|𝑧𝑡) ∝ 𝑓L

𝑡 (𝑧𝑡|𝑥𝑡) 𝑓p
𝑡 (𝑥𝑡) =

𝑛∑︁
𝑖=1

𝜈p
𝑡,𝑖 𝑓L

𝑡 (𝑧𝑡|𝑥p
𝑡,𝑖) 𝛿(𝑥𝑡 − 𝑥p

𝑡,𝑖) , (4.6)

with 𝜈p
𝑡,𝑖 being the prior sample weights that fulfill ∑︀𝑛

𝑖=1 𝜈p
𝑡,𝑖 = 1 (uniform if given by the CDS).

The key idea of the progressive measurement update is to decompose the single-step likelihood
reweighting in (4.6) into 𝑙 progressions as

𝑓 e
𝑡 (𝑥𝑡|𝑧𝑡) ∝ 𝑓L

𝑡 (𝑧𝑡|𝑥𝑡)𝑓p
𝑡 (𝑥𝑡) =

( 𝑙∏︁
𝑘=1

(
𝑓L

𝑡 (𝑧𝑡|𝑥𝑡)
)Δ𝑘

)
· 𝑓p

𝑡 (𝑥𝑡) ,
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Figure 4.10.: Demonstration of an IDS-based progressive update step for von Mises–Fisher filtering.

with ∑︀𝑙
𝑘=1 Δ𝑘 = 1, where Δ𝑘 denotes the stride length at each step. It is determined by imposing

a pregiven threshold 𝜖 on the minimal ratio among the likelihoods of current posterior samples
{𝑥𝑘,𝑖}𝑛

𝑖=1 via Åmin ({𝜔𝑘,𝑖}𝑛
𝑖=1)

max ({𝜔𝑘,𝑖}𝑛
𝑖=1)

ãΔ𝑘

≥ 𝜖 ,

with 𝜔𝑘,𝑖 = 𝑓L
𝑡 (𝑧𝑡 |𝑥𝑘,𝑖) denoting the likelihood of sample 𝑥𝑘,𝑖 given the measurement 𝑧𝑡. The

maximal stride at the 𝑘-th progression then follows

Δ𝑘 ≤
log(𝜖)

log(𝜔min
𝑘 )− log(𝜔max

𝑘 ) , with 𝜔min
𝑘 = min({𝜔𝑘,𝑖}𝑛

𝑖=1) , 𝜔max
𝑘 = max({𝜔𝑘,𝑖}𝑛

𝑖=1) . (4.7)

Each stride length Δ𝑘 is adapted to the current likelihoods ratio given the threshold 𝜖, and the
posterior density 𝑓 e

𝑡 is updated via moment matching. The progression cycle is repeated until the
information from observation is fully fused into the prior via likelihood reweighting regulated by 𝜖.

We detail the proposed progressive procedure in Algorithm 6 along with a graphic illustration
in Fig. 4.10 showing its application to an IDS-based von Mises–Fisher filter. The progression
horizon is initialized as Δ = 1 with the posterior set as the given prior density (Algorithm 6, lines
1–2). Within each progression step, we draw a deterministic sample set {𝑥𝑘,𝑖}𝑛

𝑖=1 from the current
posterior 𝑓 e

𝑡 with a configurable size 𝑛 and compute their likelihoods given the measurement
𝑧𝑡 (Algorithm 6, lines 3–5). The current fusion stride length Δ𝑘 is computed according to (4.7)
(Algorithm 6, lines 6–8). The obtained Δ𝑘 then scales the sample likelihoods, and the posterior
density is updated via moment matching. The cycle ends when the initialized progression horizon Δ
is used up (Algorithm 6, lines 9–12). Note that performing the configurable deterministic sampling
or the moment matching (line 4 and line 10 in Algorithm 6, respectively) depends on the specific
form of the distribution representing the estimate.
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As demonstrated in Fig. 4.10, we set up an identical scenario to the one given in Fig. 4.9 for
comparison with the single measurement update mentioned before. The proposed progressive
scheme with IDS-based samples adaptively decomposes the entire update step into four consecutive
substeps given 𝜖 = 0.02. Consequently, the prior samples have considerably less tendency to
degenerate, leading to superior fusion results over the ones obtained in a single-step fashion.

4.4 Case Study: Nonlinear Quaternion Estimation

The proposed configurable deterministic sampling and progressive update methods are applicable to
common tasks of nonlinear directional estimation using parametric models. In [38], we have provided
a detailed evaluation of the IDS-based von Mises–Fisher filtering with progressive measurement
fusion for nonlinear spherical estimation. In comparison with other state-of-the-art directional
filters, superior performance of the unscented von Mises–Fisher filter is achieved by combining the
two introduced enhancements (IDS + progressive update) w.r.t. tracking accuracy and runtime
efficiency. We hereby provide another scenario of quaternion-based nonlinear SO(3) estimation to
further evaluate the proposed enhancements for the unscented Bingham filter [32].

Based on the logarithm/exponential maps in (3.1) and (3.2), respectively, we specify the system
model in (2.1) based on quaternion interpolation [99] to be

𝑥𝑡+1 = 𝑎(𝑥𝑡)⊗𝑤𝑡 , with 𝑎(𝑥𝑡) = Exp𝑥𝑡

(
𝜁 · Log𝑥𝑡

(�̂�0)
)

denoting the motion model interpolating between the current state 𝑥𝑡 and a target quaternion �̂�0 =
[ 1, 1, 1, 1 ]⊤/2 ∈ S3. We set the interpolation ratio to be constant with 𝜁 = 0.1. The system noise
is assumed to follow a Bingham distribution with concentration matrix Z = −diag(1, 500, 500, 500)
and mode at a quaternion representing a rotation of 𝜃 = 𝜋/12 around the axis 𝑛 = 1/

√
3 · [ 1, 1, 1 ]⊤.

The measurement model in (2.2) is set to be non-identity as follows

𝑧𝑡 =
(
𝑥𝑡 ⊗ [ 0, 𝑧⊤

0 ]⊤ ⊗ 𝑥𝑡

)
2:4 + 𝑣𝑡 .

It rotates a point initialized at 𝑧0 = [ 2, 3, 4 ]⊤ ∈ R3 via the current quaternion state 𝑥𝑡 according
to the formula in (3.7) and imposes an additive noise term 𝑣𝑡. We assume that the measurement
noise follows a zero-mean Gaussian distribution, i.e., 𝑣𝑡 ∼ N (03, Σ𝑣), with Σ𝑣 = 0.01 · I3×3.

We apply the FDS scheme to the unscented quaternion Bingham filter (UQBF) with sample sizes
ranging from 10 to 5000. The basic version of UQBF proposed in [32] with 𝑛 = 7 deterministic
samples is also included. The proposed progressive update scheme is further integrated with the
FDS and the basic UT-based sampling method, leading to the variant called progressive unscented
quaternion Bingham filter (Prog-UQBF). Another random sampling-based quaternion Bingham
filter (QBF) [80] is deployed with sample sizes ranging from 10 to 10000. For all the filters, the
prediction step is done in a similar fashion as in [32,38] given an on-manifold additive system noise
– samples (either deterministically or randomly) drawn from the previous posterior are propagated
through the motion model 𝑎 : S3 → S3 and moment-matched to a Bingham density, which is then
composed with the noise distribution (also Bingham) to deliver the prior estimate. The tracking
accuracy is quantified according to arccos (|�̂�⊤

𝑡 𝑥𝑡|), with �̂�𝑡 and 𝑥𝑡 denoting the estimate and the
ground truth, respectively. 1000 Monte Carlo runs are performed with 30 time steps in each run,
based on which deviations in the form of the root mean squared error (RMSE) are computed w.r.t.
the last estimate of each run.

For the proposed FDS method, the LCD-based DMA approach (provided by [95]) caches precom-
puted samples every time a newly configured sample size is used, inducing different interpretation
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Figure 4.11.: Error over sample sizes given by the evaluated filters for nonlinear SO(3) estimation.

of runtime results compared with other online estimators (e.g., QBF). Therefore, a quantitative
evaluation of runtime efficiency is excluded. In practice, execution of the FDS including the
Riemannian optimization-based moment correction is typically fast. W.r.t. tracking accuracy
plotted in Fig. 4.11, the proposed Bingham FDS method delivers an evident performance boost
compared with the random sampling-based variant and the basic version using seven samples [32]
(leftmost markers). Moreover, the Prog-UQBF that exploits the proposed progressive fusion
scheme converges considerably faster than the ones using the rudimentary single-step update. Here,
the results in the Bingham-based quaternion estimation scenario coheres to our findings in the
evaluation of von Mises–Fisher-based hyperspherical estimation in [38]. They further validate
the efficacy of the proposed enhancements in Sec. 4.2 and Sec. 4.3 for upgrading the parametric
directional filtering scheme.

4.5 Short Summary

The three methodologies for upgrading the parametric probabilistic modeling and filtering of
directional random variables in this chapter, though proposed individually, can be integrated
together according to requirements of a specific application scenario [35, 37–40]. For instance,
predicting/updating the Bingham component in the PTBG modeling scheme of the first upgrade
in Sec. 4.1 can be potentially facilitated by the FDS method given in Sec. 4.2. In [40], we have
also tested the progressive fusion scheme for SE(2)-Bingham-based planar dual quaternion filtering
(mentioned in Sec. 2.2.3 and Sec. 3.3.3). There, the basic UT-based filter also exhibited considerable
improvement w.r.t. tracking accuracy for nonlinear planar motion estimation.

For real-world applications, we have deployed the deterministic progressive update scheme to
the stereo visual odometry system in [31] with quaternion-based Bingham filtering. There, the
measurement model is set up on the camera image plane, with pixel coordinates of feature points
being the measurements. Though the employed unscented Bingham filter is only equipped with
the basic version of deterministic sampling (seven samples), the progressive update scheme still
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facilitates the system to achieve an accuracy comparable to the state of the art for egomotion
estimation.
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CHAPTER
5

Topology-Aware Nonparametric Directional Filtering

While the parametric models allow for a concise representation framework and have so far delivered
promising results, several drawbacks may still arise for nonlinear directional estimation in practice.
First, deploying parametric models to directional estimation requires recursive executions of the
(deterministic) sampling–approximation cycle, where the normalization constant of a parametric
model (see Sec. 2.2.1 and Sec. 2.2.2 for PDFs of common distributions) needs to be computed
numerically during moment matching. Attaining the enhancements of configurable deterministic
samples as suggested in Sec. 4.2 also relies on on-manifold optimizers or numerical solvers. Though
runtime performance is not a bottleneck in executing parametric directional filters thanks to
solutions such as precomputation [17,80,96] and customized numerical solvers [38,79] as previously
mentioned, issues may still occur concerning approximation accuracy or numerical stability. More
importantly, parametric distributions impose their own assumptions on the random nature of
uncertainties in the physical world. For instance, a random quaternion variable may exhibit multiple
modes, thereby violating the unimodal dispersion (considering antipodal symmetry) assumed by
the Bingham distribution. Or the assumption of isotropic dispersion introduced by utilizing von
Mises–Fisher distributions can be easily violated by the uncertain hyperspherical states in practice.

As pointed out in Sec. 1.2.3, no systematic establishment of topology-aware non-parametric filtering
methods existed previously for directional domains. In this chapter, we give a dedicated investigation
in this regard by proposing two categories of methodologies – one based on hyperspherical grids,
another one based on the sequential Monte Carlo methods (i.e., particle filtering) [42]. The
two resemble each other in the sense of Dirac mixture-based discrete modeling of on-manifold
distributions. However, the former relies on grid points at fixed locations as elaborated in Sec. 5.1,
whereas the latter (shown in Sec. 5.3) contains randomness in point layouts, for which a point-
wise on-manifold UKF is proposed for enhancing the performance of the plain particle filtering
method [64].

Moreover, we provide a generic description of the on-manifold discrete filter (MDF) in Sec. 5.2.1
to show how to incorporate Dirac mixtures of deterministic supports (e.g., based on grids) as
discrete probabilistic models for nonparametric directional estimation. Besides its showcase for
grid-based discrete quaternion estimation in Sec. 5.2.2, the MDF will be further customized to a
reapproximation-based variant introduced in Sec. 6.6 of the upcoming chapter.

5.1 Grid-Based Discrete Modeling on Directional Manifolds

As the most basic topological component of directional domains, the unit hypersphere is a compact
and bounded Riemannian manifold as previously introduced in Sec. 3.1. This allows us to generate
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(A) ground truth (B) HEP grid (C) MCP grid

Figure 5.1.: Generating HEP and MCP grids on a synthesized distribution of antipodal symmetry on the unit
sphere S2 in Example 8.1. The two antipodally symmetric modes of the underlying distribution are marked in
(A). In (B) and (C), grid points are depicted by red dots with sizes proportional to the underlying densities.

a grid of points, using which underlying distributions of arbitrary forms can be approximated via
Dirac mixtures or piecewise constant densities.

Given an arbitrary hyperspherical distribution characterized by its PDF 𝑔 : S𝑑−1 → R+, we perform
discrete modeling using a Dirac mixture with its components located at grid points {𝑥𝑖}𝑛

𝑖=1 ⊂ S𝑑−1.
The resulting approximate distribution is expressed as

𝑔 =
𝑛∑︁

𝑖=1
𝜈𝑖 𝛿(𝑥− 𝑥𝑖) , with 𝜈𝑖 ∝ 𝑔(𝑥𝑖) (5.1)

being the grid weights that are the normalized function values of the underlying density 𝑔(𝑥𝑖) (thus∑︀𝑛
𝑖=1 𝜈𝑖 = 1) and 𝛿 the Dirac delta function.

5.1.1 Generating Hyperspherical Grids

Using grid points for state estimation can be traced back to the Wonham filter [65]. A first trial
on directional manifolds can be found in [66] on the circular domain, and an extension for SE(2)
estimation was made in [41] via Rao–Blackwellization. There, the circular domain is discretized
using a set of equidistantly-spaced grid points {𝑥𝑖}𝑛

𝑖=1 ⊂ S1. For discretizing the unit hyperspheres
S𝑑−1 (𝑑 ≥ 3), we provide the following two approaches for generating grid points of different layouts.

Hyperspherical equal partitioning: As pioneered in [41, 66], one straightforward strategy for
discretizing unit hyperspheres is to use equidistant grid points. In [67], an algorithm was proposed
for partitioning the unit hypersphere into patches of equal area, inducing a grid of approximately
equidistant points {𝑥𝑖}𝑛

𝑖=1 ⊂ S𝑑−1. The algorithm has been employed for IDS in Sec. 4.2.2 to obtain
the planet samples in the tangent space at the mode of the von Mises–Fisher distribution. Due to
its recursive algorithmic structure, the method can be executed very efficiently. This motivates us
to directly apply this hyperspherical equal partitioning (HEP) method for generating grid points
of uniform resolution for discrete probabilistic modeling on unit hyperspheres.

Mode-centric partitioning: The plain HEP discretizes the entire hypersphere uniformly without
explicit consideration on the shape of underlying dispersion. For certain hyperspherical random
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Algorithm 7: Mode-Centric Partitioning (MCP) (customized to unit quaternion manifold)
Input: number of orbits 𝑛1, on-orbit resolution 𝑛2, mode 𝛼
Output: set of grid points X ⊂ S3

1 X← 𝛼 ;
2 {�̃�𝜄

𝑗}
𝑛2
𝑗=1 ← HEP (S2, 𝑛2) ;

3 for 𝑘 ← 1 to 𝑛1 do
4 for 𝑗 ← 1 to 𝑛2 do
5 𝑥𝑘,𝑗 ← 𝛼⊗ Exp1( 𝜋𝑘

2𝑛1
[ 0, �̃�𝜄

𝑗 ]⊤) ; // see (3.9) and (3.10)

6 X← X ∪ 𝑥𝑘,𝑗 ;

7 return X ;

variables, their uncertainties are inherently equipped with additional topological structure (e.g.,
unit quaternions follow antipodally symmetric distributions on S3). Also, the approximation
quality of HEP grids depends purely on one number that determines the resolution, resulting in
inefficient discrete models for representing densities of high concentration or in high-dimensional
spaces. Dispersion of a hyperspherical random variable is almost never distributed uniformly on
the hypersphere, and a high approximation resolution is often desired in the vicinity of the mode
to alleviate potential grid point degeneracy for nonlinear filtering. Therefore, we propose the
mode-centric partitioning (MCP) method. For clearness, we present the method in accordance
with the geometric structure of the unit quaternion manifold introduced in Sec. 3.2.

As detailed in Algorithm 7, the method resembles the IDS procedure in Algorithm 5 (illustrated in
Fig. 4.7) proposed for von Mises–Fisher distributions. However, since no parametric assumption is
imposed on the discrete model, the resulting grid layout is purely determined by the configured
resolution, with 𝑛1 and 𝑛2 denoting the number of orbits and number of points per orbit, respectively.
We place the grid center at the given mode location 𝛼 ∈ S3 (Algorithm 7, line 1). As introduced in
Sec. 3.2.2, the tangent space on the unit quaternion manifold is bounded by a sphere S2

𝜋/2 of radius
𝜋/2 under logarithm/exponential maps w.r.t. its local basis1. Therefore, the sample set {�̃�𝜄

𝑗}
𝑛2
𝑗=1

given by the basic HEP is scaled with uniform interval up to 𝜋/2 given 𝑛1 and retracted back to S3

via the quaternion exponential map in (3.10) (Algorithm 7, lines 2–6). The resulting grid sample
set has a cardinality of |X| = 𝑛1 · 𝑛2 + 1. We provide the following example to illustrate grid-based
Dirac mixture modeling given by (5.1) on unit hyperspheres.

Example 8: We consider two scenarios for grid-based hyperspherical discrete modeling.

1. An antipodally symmetric distribution is synthesized on S2 in the form of a von Mises–Fisher
mixture 𝑓VMFM(𝑥) = ∑︀3

𝑖=1 1/6 · (𝑓VMF(𝑥; 𝛼𝑖, 𝜅𝑖) + 𝑓VMF(𝑥;−𝛼𝑖, 𝜅𝑖)) with means (𝛼1, 𝛼2, 𝛼3)
and concentrations (𝜅1, 𝜅2, 𝜅3) configured asÅ 1

5
√

5
[ 0, 5, 10 ]⊤,

1√
501

[ 20, 1, 10 ]⊤,
1√
326

[ 1, 15, 10 ]⊤
ã

and (6, 8, 10) ,

respectively. For discrete approximations of the distribution using Dirac mixtures, we perform
MCP and HEP to generate spherical grids of resolutions (𝑛1, 𝑛2) = (20, 30) and 𝑛 = 20 ×
30 + 1 = 601, respectively.

1 Due to the additional antipodal symmetry, this is different from the case of IDS where the tangent space is bounded by S2
𝜋.
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Figure 5.2.: MCP-based discrete modeling of Bingham distributions on S3 visualized in the tangent space at
the modes in Example 8.2. Blue dots denote random samples drawn from the ground truth for characterizing
the uncertainties. Grid points are depicted by red dots with sizes proportional to the underlying densities.

2. We first set up two Bingham distributions defined in the concise form B(C) on the unit
hypersphere S3 with parameter matrices C ∈ {−diag(1, 30, 6, 6),−diag(1, 20, 6, 20)}. Af-
terward, we set both of their modes to a unit quaternion encoding a rotation of 𝜃 = 𝜋/3
around axis [ 1, 0, 0 ]⊤. For both settings, we perform MCP with resolutions configured as
(𝑛1, 𝑛2) ∈ {(20, 20), (20, 50), (50, 20)}.

As shown in Fig. 5.1, the synthesized distribution in the first scenario exhibits dispersion of antipodal
symmetry on S2. We depict the grid points using red dots with their sizes proportional to the
Dirac component weights as defined in (5.1). Though configured with identical grid resolutions, the
mode-centric variant induces evidently less information loss than the HEP grid for Dirac mixture
modeling. In consideration of the additional topological structure of antipodal symmetry, the MCP
grid only discretizes the hemisphere, thereby also enabling a more efficient discrete representation
compared with the HEP method. Fig. 5.2 further shows the MCP-based Dirac mixture modeling
on S3. To plot hyperspherical uncertainties, we draw 5 × 104 random samples (in blue) from
each ground truth distribution and map them to the tangent space at the mode (thereby enabling
visualizations in R3) together with the weighted grid points (in red). While all configurations of the
MCP grids deliver effective Dirac mixture models with consideration of the antipodal symmetry of
unit quaternion states, the approximation quality differs over different grid resolutions.

5.2 On-Manifold Discrete Filtering

As a first trial of nonparametric on-manifold directional filtering, we generalize the Dirac mixture
expression in (5.1) from the hypersphere to generic directional manifolds M using deterministic
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supports (e.g., at hyperspherical grids) for discrete representation of the posterior density. As
discrete modeling approaches may differ given different state space topology, we categorize this
class of filtering methods under the name of the on-manifold discrete filter (MDF) [41,51,100].

5.2.1 Generic Design

We represent the posterior density at time step 𝑡 using a Dirac mixture-based discrete model

𝑓 e
𝑡 (𝑥𝑡) =

𝑛∑︁
𝑖=1

𝜈e
𝑡,𝑖 𝛿(𝑥𝑡 − 𝑥e

𝑡,𝑖) , (5.2)

with {𝑥e
𝑡,𝑖}𝑛

𝑖=1 ⊂ M and {𝜈e
𝑡,𝑖}𝑛

𝑖=1 (∑︀𝑛
𝑖 𝜈e

𝑡,𝑖 = 1 holds) being locations and weights of the Dirac
components, respectively. Given the generic setup of nonlinear recursive Bayesian estimation in
Sec. 2.1, we introduce the generic design of the on-manifold discrete filter as follows [41,43].

Prediction step: By specifying (2.4) with the proposed discrete model in (5.2), we obtain the
prediction step of MDF in the form2

𝑓p
𝑡+1(𝑥𝑡) =

∫︁
M

𝑓T
𝑡 (𝑥𝑡+1|𝑥𝑡)𝑓 e

𝑡 (𝑥𝑡) d𝑥𝑡

=
∫︁
M

𝑓 e
𝑡 (𝑥𝑡)

∫︁
W

𝑓(𝑥𝑡+1|𝑤𝑡, 𝑥𝑡) 𝑓
𝑤
𝑡 (𝑤𝑡) d𝑤𝑡 d𝑥𝑡

=
𝑛∑︁

𝑖=1
𝜈e

𝑡,𝑖

∫︁
W

𝑓(𝑥𝑡+1|𝑤𝑡, 𝑥e
𝑡,𝑖) 𝑓

𝑤
𝑡 (𝑤𝑡) d𝑤𝑡 .

We further represent the noise distribution using a Dirac mixture 𝑓
𝑤
𝑡 (𝑤𝑡) = ∑︀𝑛w

𝑘=1 𝜈w
𝑡,𝑘 𝛿(𝑤𝑡 − 𝑤𝑡,𝑘),

where ∑︀𝑛w
𝑘=1 𝜈w

𝑡,𝑘 = 1 holds. Taking the generic form of the system model in (2.1), we obtain

𝑓p
𝑡+1(𝑥𝑡+1) =

𝑛∑︁
𝑖=1

𝑛w∑︁
𝑘=1

𝜈e
𝑡,𝑖 𝜈w

𝑡,𝑘 𝛿
(
𝑥𝑡+1 − 𝑎(𝑥e

𝑡,𝑖, 𝑤𝑡,𝑘)
)

. (5.3)

Here, the on-manifold state sample set {𝑥e
𝑡,𝑖}𝑛

𝑖=1 ⊂ M is combined with the noise sample set
{𝑤𝑡,𝑘}𝑛w

𝑘=1 ⊂ W via Cartesian product and propagated together through the system dynamics
𝑎 : M×W→M. Further, (5.3) can be rewritten as

𝑓p
𝑡+1(𝑥𝑡+1) =

𝑛p∑︁
𝑟=1

𝜈p
𝑡+1,𝑟 𝛿(𝑥𝑡+1 − 𝑥p

𝑡+1,𝑟) , (5.4)

with 𝑥p
𝑡+1,𝑟 = 𝑎(𝑥e

𝑡,𝑖, 𝑤𝑡,𝑘) and 𝜈p
𝑡+1,𝑟 = 𝜈e

𝑡,𝑖 𝜈w
𝑡,𝑘 (thus 𝑛p = 𝑛 · 𝑛w and 𝑟 = (𝑖− 1) · 𝑛w + 𝑘) denoting

the location and the weight of each propagated Dirac component, respectively. If a prior estimate
is required at this stage (e.g., for consecutive predictions), the raw prior sample set {𝑥p

𝑡+1,𝑟}
𝑛p
𝑟=1 is

to be approximated from cardinality 𝑛 · 𝑛w to 𝑛 given the setting of a specific discrete model.

Update step: Suppose a specific discrete filter directly fuses the measurement 𝑧𝑡+1 to the prior
Dirac mixture in (5.4), the update step in (2.3) is then given by

𝑓 e
𝑡+1(𝑥𝑡+1|𝑧𝑡+1) ∝ 𝑓L

𝑡+1(𝑧𝑡+1|𝑥𝑡+1)𝑓p
𝑡+1(𝑥𝑡+1)

=
𝑛p∑︁

𝑟=1
𝑓L

𝑡+1(𝑧𝑡+1|𝑥p
𝑡+1,𝑟) 𝜈p

𝑡+1,𝑟 𝛿(𝑥𝑡+1 − 𝑥p
𝑡+1,𝑟) .

(5.5)

2 For brevity, we omit the dependency on measurements 𝑧1:𝑡 in (2.4) for the upcoming derivations.
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Algorithm 8: MCP-based Discrete Quaternion Filter
Input: posterior set {(𝑥e

𝑡,𝑖, 𝜈e
𝑡,𝑖)}𝑛

𝑖=1, noise set {(𝑤𝑡,𝑘, 𝜈w
𝑡,𝑘)}𝑛w

𝑘=1, measurement 𝑧𝑡+1
Output: posterior set {(𝑥e

𝑡+1,𝑖, 𝜈e
𝑡+1,𝑖)}𝑛

𝑖=1
/* prediction step */

1 {(𝑥p
𝑡+1,𝑟, 𝜈p

𝑡+1,𝑟)}𝑛P
𝑟=1 ← propagate ({(𝑥e

𝑡,𝑖, 𝜈e
𝑡,𝑖)}𝑛

𝑖=1, {(𝑤𝑡,𝑘, 𝜈w
𝑡,𝑘)}𝑛w

𝑘=1) ; // see (5.3)
2 𝛼e

𝑡+1 ← getMode ({(𝑥p
𝑡+1,𝑟, 𝜈p

𝑡+1,𝑟)}
𝑛p
𝑟=1) ;

3 {𝑥e
𝑡+1,𝑖}𝑛

𝑖=1 ← transportGrid ({𝑥e
𝑡,𝑖}𝑛

𝑖=1, 𝛼e
𝑡 , 𝛼e

𝑡+1) ; // see (5.6)
4 {𝜈p

𝑡+1,𝑖}𝑛
𝑖=1 ← reallocateWeights ({(𝑥p

𝑡+1,𝑟, 𝜈p
𝑡+1,𝑟)}𝑛P

𝑟=1, {𝑥e
𝑡+1,𝑖}𝑛

𝑖=1) ; // see (5.7)
/* update step */

5 for 𝑖← 1 to 𝑛 do
6 𝜈e

𝑡+1,𝑖 ← 𝜈p
𝑡+1,𝑖 · 𝑓L

𝑡+1(𝑧𝑡+1|𝑥e
𝑡+1,𝑖) ;

7 return {(𝑥e
𝑡+1,𝑖, 𝜈e

𝑡+1,𝑖)}𝑛
𝑖=1 ;

The reweighted Dirac mixture then needs to be approximated in accordance with the form of the
employed discrete model.

Implementing this procedure depends on the specific discrete modeling and filtering approach. In
principle, both grid-based discrete probabilistic models in Sec. 5.1 can be incorporated into the
generic design of on-manifold discrete filtering. In fact, studies on both variants are undergoing
actively. For showcasing the introduced discrete filtering scheme, we first provide one variant
based on the MCP grid in the upcoming section for recursive quaternion estimation [43]. For
detailed elaboration on the HEP-based discrete filtering, the author provides a reading list of own
publications including [45,46,48]. Besides the grid-based discrete filtering, another variant using
Dirac mixture reapproximation will be provided in Sec. 6.6.

5.2.2 Grid-Based Discrete Quaternion Filter

One concern arises when customizing the general discrete filtering scheme to the unit quater-
nion manifold using the MCP-based grid representation – the propagated weighted grid points
{(𝑥p

𝑡+1,𝑟, 𝜈p
𝑡+1,𝑟)}𝑛P

𝑟=1 in (5.4) have an arbitrary layout and a size of 𝑛·𝑛w instead of 𝑛 (see Algorithm 8,
line 1). Therefore, an additional step is desired for reallocating them to a mode-centric grid (of
fixed layout) placed at the new mode. As introduced in Sec. 3.2.2, the Hamilton product indicates
an SO(4) rotation via the matrix representation in (3.5), under which the unit hypersphere S3 is
closed. Thus, we transport the MCP grid {𝑥e

𝑡,𝑖}𝑛
𝑖=1 ⊂ S3 centered at the previous mode 𝛼e

𝑡 to the
new one 𝛼e

𝑡+1 given by the system propagation via

𝑥e
𝑡+1,𝑖 = 𝑥e

𝑡,𝑖 ⊗ (𝛼e
𝑡)−1 ⊗ 𝛼e

𝑡+1 = Q⌟
𝛼e

𝑡+1
(Q⌟

𝛼e
𝑡
)⊤𝑥e

𝑡,𝑖 =: R𝑡+1
𝑡 𝑥e

𝑡,𝑖 , (5.6)

without changing the grid topology (since R𝑡+1
𝑡 ∈ SO(4) denotes a rigid body rotation) (Algorithm 8,

lines 2–3). Each propagated grid point 𝑥p
𝑡+1,𝑟 is then absorbed into the transported grid by

reallocating its weight among the nearest 𝑚 grid points {𝑥e
𝑡+1,𝑗}𝑚

𝑗=1 proportionally to the inverse
geodesic distance D(𝑥e

𝑡+1,𝑗, 𝑥p
𝑡+1,𝑟) (Algorithm 8, line 4) [43]. Executed in a cumulative manner

through all propagated grid points, this procedure can be expressed as

𝜈p
𝑡+1,𝑗 ← 𝜈p

𝑡+1,𝑗 +
D(𝑥e

𝑡+1,𝑗, 𝑥p
𝑡+1,𝑟)∑︀𝑚

𝑗=1D(𝑥e
𝑡+1,𝑗, 𝑥p

𝑡+1,𝑟)
𝜈p

𝑡+1,𝑟 , (5.7)
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with D(𝑥e
𝑡+1,𝑗, 𝑥p

𝑡+1,𝑟) = 1/ arccos(|(𝑥e
𝑡+1,𝑗)⊤𝑥p

𝑡+1,𝑟|) being the inverse geodesic distance w.r.t. arc
length. Afterward, we fuse the measurement 𝑧𝑡+1 into the grid-based representation by reweighting
the grid points using their likelihoods (Algorithm 8, lines 5–6).

As a variant of the presented grid-based quaternion filter, we also proposed a method in [46] that
involves modifying the original HEP algorithm [67] for generating equidistant hyperhemispherical
grid for quaternion estimation using the hyperhemisphere. Due to the uniform topology, the
approach enables precomputation of a system-transition matrix given a time-invariant transition
density 𝑓T(𝑥𝑡+1|𝑥𝑡) for efficiently predicting grid weights without reallocation. Similar filter designs
were also introduced for the general hyperspherical [45] and hypertoridal manifolds [47], and
extensions to the composite directional domains were made based on Rao–Blackwellization for
planar motion estimation [41,48]. As studies on grid-based directional filtering are still ongoing
with many variants emerging, we only focus on its basic design in this thesis and do not elaborate
on evaluating its performance3. A detailed evaluation of the on-manifold discrete filtering scheme
is provided in combination with the Dirac mixture reapproximation technique in Sec. 6.6.1 of the
upcoming chapter.

5.3 On-Manifold Unscented Particle Filtering

Sequential Monte Carlo methods are a straightforward strategy for nonparametric filtering and
are directly applicable to directional domains. In theory, they allow exact modeling of arbitrary
uncertainties provided that adequately many particles are available. In practice, recursive Bayesian
estimation for directional domains typically has to deal with strong nonlinearities and high-
dimensional spaces (e.g., on hyperspheres or the unit dual quaternion manifold), inducing particles
to quickly degenerate. A plain particle filter deploys the transition density as the proposal
distribution and thus disregards the recent observation, leading to deteriorated performance
specifically in the face of heavy-tailed distributions, non-stationary models, or peaky likelihoods.

The aforementioned issues may occur in a combined manner, making deploying PFs much less
appealing for directional estimation compared with Euclidean cases. In order to mitigate such
difficulties, we propose a topology-aware unscented particle filtering scheme based on its original
linear counterpart [64], making the sequential Monte Carlo methods deployable for nonparametric
directional estimation.

5.3.1 Sequential Monte Carlo Methods and the Unscented Particle Filter

The PF [42] deployed to directional manifolds exploits a Dirac mixture distribution for representing
the posterior density in the form 𝑓(𝑥0:𝑡|𝑧1:𝑡) = ∑︀𝑛

𝑖=1 𝜈𝑡,𝑖 𝛿(𝑥0:𝑡 − 𝑥0:𝑡,𝑖) with {𝑥0:𝑡,𝑖}𝑛
𝑖=1 ⊂ M being

the particles and {𝜈𝑡,𝑖}𝑛
𝑖=1 their weights summing to one, i.e., ∑︀𝑛

𝑖=1 𝜈𝑡,𝑖 = 1. As sampling from
the true density is infeasible in theory, the common strategy is to exploit a proposal distribution
𝑔(𝑥𝑡,𝑖|𝑥0:𝑡−1,𝑖, 𝑧1:𝑡) that is easy to sample, updating the importance weight of each particle in a
recursive fashion according to

𝜈𝑡,𝑖 = 𝜈𝑡−1,𝑖

𝑓(𝑧𝑡|𝑥𝑡,𝑖)𝑓(𝑥𝑡,𝑖|𝑥𝑡−1,𝑖)
𝑔(𝑥𝑡,𝑖|𝑥0:𝑡−1,𝑖, 𝑧1:𝑡)

. (5.8)

3 Evaluations of specific variants of grid-based discrete filters are elaborated in own publications [43–48].
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The most popular choice for the proposal distribution is the transition prior 𝑓(𝑥𝑡,𝑖|𝑥𝑡−1,𝑖) [42].
While fulfilling the recursive weight update (5.8) in a concise manner, this strategy disregards the
most recently observed information from 𝑧𝑡. As previously mentioned, this leads to deteriorated per-
formance for state estimation with strong nonlinearities, heavy-tailed distributions, non-stationary
models or peaky likelihoods, and the circumstance may even exacerbate for directional estimation.

In Euclidean spaces, the unscented particle filter (UPF) was proposed by exploiting particlewise
UKFs to obtain proposal distributions that incorporate the recently obtained measurement, leading
to evidently superior tracking performance over a plain PF. Moreover, it has been theoretically
justified that the UPF delivers a convergence rate that is independent of the dimensionality, which
also motivates us to adopt it for directional domains. As introduced in [49,50], the key component
for such extensions is to establish the particlewise UKF on directional manifolds. In the upcoming
section, we demonstrate such techniques in a unified manner with customization to hyperspheres
and the manifold of unit dual quaternions (as a showcase for composite directional domains).

5.3.2 Particlewise On-Manifold UKF

As shown in Sec. 3.1, the gnomonic projection enables an unbounded probabilistic interpretation in
the tangent space at points on hyperspheres without issues such as the warping and truncation effects
(induced by the logarithm/exponential maps and orthographic projection/retraction, respectively).
Therefore, we set up a Gaussian distribution in the (augmented) tangent space of each on-manifold
particle 𝑥𝑖 ∈M w.r.t. its local basis and propose the topology-aware on-manifold UKF (MUKF)
based upon the gnomonic projection/retraction. We specify these operations for the considered
directional domains as follows.

Unit hyperspheres: At any 𝑣 ∈ S𝑑−1, a tangent space can be established w.r.t. a local basis Ev.
We concatenate the basis vectors column wise to form a matrix Ev ∈ R𝑑×(𝑑−1) for transforming
points in local coordinates to global coordinates. Based thereon, the hyperspherical gnomonic
projection/retraction (given in (3.3) and (3.4), respectively) can be derived w.r.t. Ev as

�̃�𝜄 = projectSph(𝑣, 𝑥) = E⊤
v
(
𝑥/(𝑣⊤𝑥)− 𝑣

)
∈ R𝑑−1 , and

𝑥 = retractSph(𝑣, �̃�𝜄) =
(
𝑣 + Ev �̃�𝜄

)/√
1 + ‖�̃�𝜄‖2 ∈ S𝑑−1 ⊂ R𝑑 ,

respectively, with 𝑥 being an arbitrary point on the unit hypersphere. Setting a local basis Ev
is flexible. For states on the S3, a convenient choice of Ev is to use the quaternion concomitant
bases (QCBs) A∘

x given in (3.18). We therefore exploit them in the upcoming case of the unit dual
quaternion manifold.

Unit dual quaternion manifold: We establish the so-called locally augmented tangent space
(LATS) based on the SE(3) representation in (3.12) of unit dual quaternions. Given an arbitrary
unit dual quaternion 𝑣 = [ 𝑣⊤

r , 𝑣⊤
s ]⊤ ∈ DH1, we augment the tangent space T𝑣r

S3 at the real part
𝑣r with the dual part expressed w.r.t. the local basis A⌟

xr taken from the QCBs in (3.18), inducing
a six-dimensional Euclidean space for particlewise quantification of the on-manifold uncertainty.
As proposed in [50], any point 𝑥 = [ 𝑥⊤

r , 𝑥⊤
s ]⊤ ∈ DH1 can be mapped to the LATS at 𝑣 ∈ DH1 via

the augmented gnomonic projection4

�̃�𝜄 = projectDH1(𝑣, 𝑥) = [ (�̃�𝜄
r)⊤, (�̃�𝜄

s)⊤ ]⊤ ∈ R6 ,

4 The antipodal symmetry underlying in the unit dual quaternion topology needs to be first addressed.
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Algorithm 9: Particlewise On-Manifold UKF (MUKF)
Input: (𝑥e

𝑡 , Ce
𝑡), measurement 𝑧𝑡+1

Output: (𝑥e
𝑡+1, Ce

𝑡+1)
/* prediction step */

1 {(�̃�𝜄
𝑡,𝑘, 𝜔𝑘)}𝑚

𝑘=1 ← sampleDeterministic (𝑓N (0, Ce
𝑡)) ;

2 {𝜎𝑡,𝑘}𝑚
𝑘=1 ← retract (𝑥e

𝑡 , {�̃�𝜄
𝑡,𝑘}𝑚

𝑘=1) ; // domain-specific

3 {𝜎𝑡+1,𝑘}𝑚
𝑘=1 ← propagate ({𝜎𝑡,𝑘}𝑚

𝑘=1) ;
4 𝑥p

𝑡+1 ← average ({(𝜎𝑡+1,𝑘, 𝜔𝑘)}𝑚
𝑘=1) ;

5 {�̃�𝜄
𝑡+1,𝑘}𝑚

𝑘=1 ← project (𝑥p
𝑡+1, {𝜎𝑡+1,𝑘}𝑚

𝑘=1) ; // domain-specific

6 Cp
𝑡+1 ←

∑︀
𝑘 𝜔𝑘 �̃�𝜄

𝑡+1,𝑘(�̃�𝜄
𝑡+1,𝑘)⊤ ;

7 {𝑧𝑡+1,𝑘}𝑚
𝑘=1 ← predictMeasurement (𝑥p

𝑡+1, {�̃�𝜄
𝑡+1,𝑘}𝑚

𝑘=1) ;
/* update step */

8 𝑧p
𝑡+1 ←

∑︀
𝑘 𝜔𝑘 𝑧𝑡+1,𝑘 ;

9 C1 ←
∑︀

𝑘 𝜔𝑘(𝑧𝑡+1,𝑘 − 𝑧p
𝑡+1)(𝑧𝑡+1,𝑘 − 𝑧p

𝑡+1)⊤ ;
10 C2 ←

∑︀
𝑘 𝜔𝑘 �̃�𝜄

𝑡+1,𝑘(𝑧𝑡+1,𝑘 − 𝑧p
𝑡+1)⊤ ;

11 K← C2(C1)−1 ;
12 �̃�𝜄

𝑡+1 ← K(𝑧𝑡+1 − 𝑧p
𝑡+1) ;

13 Ce
𝑡+1 ← Cp

𝑡+1 −K C1 K⊤ ;
14 𝑥e

𝑡+1 ← retract (𝑥p
𝑡+1, �̃�𝜄

𝑡+1) ; // domain-specific

15 return (𝑥e
𝑡+1, Ce

𝑡+1) ;

with �̃�𝜄
r = projectSph(𝑣r, 𝑥r) ∈ R3 and �̃�𝜄

s = R⊤
vr(𝑡x − 𝑡v) ∈ R3. Rvr denotes the SO(3) rotation

matrix given by the real part 𝑣r of 𝑣 as shown in (3.8). 𝑡x and 𝑡v are the translation terms
represented by the dual quaternions 𝑥 and 𝑣, respectively. The derivation for mapping the dual
part is provided in Appendix A.3. Inversely, any point �̃�𝜄 = [ (�̃�𝜄

r)⊤, (�̃�𝜄
s)⊤ ]⊤ in the LATS at 𝑣 ∈ DH1

can be mapped back to the manifold DH1 via the augmented gnomonic retraction

𝑥 = retractDH1(𝑣, �̃�𝜄) = [ 𝑥⊤
r , 𝑥⊤

s ]⊤ ∈ DH1 ,

with 𝑥r = retractSph(𝑣r, �̃�𝜄
r) ∈ S3 and 𝑥s = 0.5A⌟

xr(Rvr�̃�
𝜄
s + 𝑡v) ∈ T𝑥r

S3.

Based on the particlewise (locally augmented) tangent space (TS) enabled by the (augmented)
gnomonic projection/retraction, we adapt the UKF to the topology of the considered directional
domains and propose a unified on-manifold design shown in Algorithm 9. As separately elaborated
in [49] and [50], each particle is assigned with a covariance matrix to characterize the on-manifold
uncertainty in its (LA)TS in the form of a zero-mean Gaussian distribution w.r.t. a local basis.
We first draw UT-based deterministic samples in the (LA)TS at each particle 𝑥e

𝑡 from the previous
posterior density5, retract them to the underlying manifold, and propagate them through the
system dynamics in (2.1) (Algorithm 9, lines 1–3). The propagated samples are then averaged
to obtain the prior state 𝑥p

𝑡+1 to locate a new (LA)TS, to which the propagated samples are
mapped via (augmented) gnomonic projection, and the in-tangent-space covariance is computed to
characterize the prior proposal (Algorithm 9, lines 4–6). After the measurement is predicted for
each deterministic sample using the measurement model in (2.2) (gnomonic retractions are here
exploited), we perform an ordinary UKF update step in the (LA)TS at 𝑥p

𝑡+1 to obtain the posterior
estimate w.r.t. the local basis (Algorithm 9, lines 7–13). The mean of the Gaussian posterior is

5 Since the MUKF is executed for every particle following the identical fashion, the particle index is omitted in Algorithm 9.
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Algorithm 10: On-Manifold Unscented Particle Filter (MUPF)
Input: {(𝑥e

𝑡,𝑖, 𝜈e
𝑡,𝑖, Ce

𝑡,𝑖)}𝑛
𝑖=1 , measurement 𝑧𝑡+1

Output: {(𝑥e
𝑡+1,𝑖, 𝜈e

𝑡+1,𝑖, Ce
𝑡+1,𝑖)}𝑛

𝑖=1
1 for 𝑖← 1 to 𝑛 do

/* particlewise MUKF */

2 (𝑥e
𝑡+1,𝑖, Ce

𝑡+1,𝑖)← MUKF(𝑥e
𝑡,𝑖, Ce

𝑡,𝑖, 𝑧𝑡+1) ;
/* importance weighting */

3 �̃�𝜄
𝑡+1,𝑖 ← sampleRnd (𝑓N (0, Ce

𝑡+1,𝑖)) ;
4 �̂�𝑡+1,𝑖 ← retract (𝑥e

𝑡+1,𝑖, �̃�𝜄
𝑡+1,𝑖) ; // domain-specific

5 𝜈e
𝑡+1,𝑖 ← 𝜈e

𝑡,𝑖

𝑓(𝑧𝑡+1|�̂�𝑡+1,𝑖)𝑓(�̂�𝑡+1,𝑖|𝑥𝑡,𝑖)
𝑔(�̂�𝑡+1,𝑖|𝑥0:𝑡,𝑖, 𝑧1:𝑡+1) ;

6 {𝜈e
𝑡+1,𝑖}𝑛

𝑖=1 ← normalize({𝜈e
𝑡+1,𝑖}𝑛

𝑖=1) ;
7 {(𝑥e

𝑡+1,𝑖, 𝜈e
𝑡+1,𝑖, Ce

𝑡+1,𝑖)}𝑛
𝑖=1 ← resample({(�̂�𝑡+1,𝑖, 𝜈e

𝑡+1,𝑖, Ce
𝑡+1,𝑖)}𝑛

𝑖=1) ;
8 return {(𝑥e

𝑡+1,𝑖, 𝜈e
𝑡+1,𝑖, Ce

𝑡+1,𝑖)}𝑛
𝑖=1 ;

then mapped back to the manifold via the (augmented) gnomonic retraction, and we obtain the
new location of the particle (Algorithm 9, line 14).

5.3.3 The On-Manifold Unscented Particle Filter

As introduced in [49,50], the proposed on-manifold UKF naturally enables the unscented particle
filtering scheme on the considered directional manifolds. As shown in Algorithm 10, each particle
from the posterior Dirac mixture is associated with a 3-tuple including its location 𝑥e

𝑡,𝑖, weight
𝜈e

𝑡,𝑖, and the covariance matrix Ce
𝑡,𝑖 in its (LA)TS for quantifying the on-manifold proposal density.

By running the proposed MUKF for each particle and taking the resulting UKF posterior as
the particlewise proposal 𝑔(𝑥𝑡+1,𝑖|𝑥0:𝑡,𝑖, 𝑧1:𝑡+1), the recently observed evidence 𝑧𝑡+1 is inherently
considered for updating the importance weight following (5.8) (Algorithm 10, lines 1–5). Afterward,
we normalize the updated weights and perform a typical sampling-importance resampling procedure
to obtain equally weighted particles (Algorithm 10, lines 6–7).

The presented MUPF scheme was first specified on unit hyperspheres and deployed to quaternion-
based orientation estimation in [49]. Further, it was applied to the manifold of unit dual quaternions
in [50] for rigid body motion estimation. Both variants showed the superiority of the proposed
methodology over the plain particle filter and parametric directional filters w.r.t. accuracy and
robustness, especially under conditions of strong nonlinearities and peaky likelihoods. In these
cases, the parametric filters mostly lose tracking, and a plain PF requires a large amount of
particles for normal functionality. In the following case study, we set up a similarly difficult scenario
compared with [50] for nonlinear SE(3) estimation using the variant on DH1 for showcasing its
convergence behavior over numbers of particles and runtime.

5.3.4 Case Study: Nonlinear SE(3) Estimation

We specify the system model in (2.1) on DH1 into the following form

𝑥𝑡+1 = 𝑥𝑡 ⊠ 𝑤𝑡 ,
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Figure 5.3.: Error over numbers of particles given by the evaluated filters.

with 𝑥𝑡 ∈ DH1 and 𝑤𝑡 ∈ DH1 being the unit dual quaternion state and the noise term as defined
in (3.12), respectively. Similar to the evaluation scenario in [50], we synthesize the noise term
𝑤𝑡 = [ 𝑤⊤

r,𝑡, 𝑤⊤
s,𝑡]⊤ to be state-dependent. Its real part represents a rotation of angle 𝜃w

𝑡 around axis
𝑢w

𝑡 , with the former following a von Mises distribution and the latter a von Mises–Fisher distribution
parameterized as VM(𝜋/12, 200) and VMF (1/

√
3 · [ 1, 1, 1 ]⊤, 200), respectively. The dual part

𝑤s,𝑡 of the noise term encodes a translation given by 𝑡w
𝑡 = (𝑥𝑡,1 + 𝑤𝑡,1) �̆�

w
𝑡 . Here, �̆�

w
𝑡 denotes a state-

independent component that is assumed to follow a Gaussian distribution N ([ 5, 2, 10 ]⊤, 0.1 · I3×3).
𝑥𝑡,1 and 𝑤𝑡,1 are the first elements in the state and noise vectors, respectively.

The measurement model in (2.2) is specified to be

𝑧𝑡 =
(
𝑥𝑡 ⊠ [ 1, 0, 0, 0, 0, 𝑧⊤

0 ]⊤ ⊠ 𝑥𝑡

)
6:8 + 𝑣𝑡 ,

which transforms a point initialized at 𝑧0 = [ 2, 3, 4 ]⊤ according to the rigid body motion represented
by the state 𝑥𝑡 following (3.13). The additive noise 𝑣𝑡 is assumed to follow a zero-mean Gaussian
distribution N (03, Σ𝑣) with Σ𝑣 = 0.1 · I3×3.

We compare the proposed MUPF-variant, the unscented dual quaternion particle filter (UDQPF),
with a plain (dual quaternion) particle filter (DQPF) using the same resampling method. The
numbers of particles in the proposed UDQPF are {20, 50, 100, 200, 500, 1000}, and the DQPF is
equipped with {50, 100, 1000, 2000, 5000, 10000} particles. The error metric for unit dual quaternion
states is the geodesic distance (expressed without unit) defined on DH1 as in [9,89], where rotation
and translation errors are quantified simultaneously6. Overall 1000 Monte Carlo runs of simulations
are executed with 30 steps in each run. Based thereon, deviations are summarized into RMSE of
the last estimate in each run as in Sec. 4.4.

6 A degenerate case of the same metric on planar dual quaternion manifold was employed as the residual term for pose
graph optimization in [101].
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Figure 5.4.: Runtime over numbers of particles given by the evaluated filters.

Figure 5.5.: Error over runtime given by the evaluated filters.
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5.4. Short Summary

As shown in Fig. 5.3, the UDQPF delivers a better tracking accuracy even using 20 particles
compared with the ordinary DQPF exploiting 5000 particles. Further shown in Fig. 5.4, the
UDQPF takes more runtime than the DQPF given same numbers of particles due to the additional
particlewise MUKF. However, it exhibits a much better tracking accuracy and convergence over
runtime as shown in Fig. 5.5. Combined with our findings in [49, 50], it can be validated that
the proposed on-manifold unscented particle filtering scheme exhibits superior performance in
challenging directional estimation scenarios (e.g., involving strong nonlinearities, state-dependency
in noise or peaky likelihoods) over the plain PF and competitive parametric filters.

5.4 Short Summary

In this chapter, we introduce two novel on-manifold methodologies for nonparametric filtering in
directional domains – one based on discrete modeling using grids of different topology, another
one based on sequential Monte Carlo methods with topology-aware enhancements for difficult
estimation scenarios. While both of them exploit Dirac mixtures for nonparametric modeling of
arbitrary distributions on directional manifolds, the former has fixed locations of Dirac components
due to the underlying grid structure, whereas the latter contains randomness in particles that
support Dirac components.

As discussed in Example 8 together with the illustrations in Fig. 5.1 and Fig. 5.2, the grid-based
discrete modeling scheme has the drawback of fixed grid structure that is nonadaptive to the shape
of the underlying distribution. The Monte Carlo-based method models the on-manifold uncertainty
adaptively to its shape but in theory contains redundant information due to the randomness in
particles. Though both of them are successfully deployed to nonparametric directional estimation
and deliver promising results, we may still search for an alternative Dirac mixture-based probabilistic
model somewhere in between – that has the adaptiveness of the Monte Carlo-based method for
shape approximation and deterministic supports on the manifold (similar to a grid). This interest
motivates us to propose the on-manifold Dirac mixture reapproximation paradigm in the upcoming
chapter.
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CHAPTER
6

On-Manifold Dirac Mixture Reapproximation

As introduced in Chapter 4, the parametric probabilistic models impose strong assumptions on the
uncertain nature of directional random variables. Grid-based or Monte Carlo-based schemes as
discussed in Chapter 5 are possible solutions to nonparametric modeling and filtering. However, they
may lack the representation efficiency due to the nonadaptive grid topology or the randomness in
particles. In this chapter, we propose a unified paradigm for enabling efficient Dirac mixture-based
nonparametric modeling on directional manifolds.

We first introduce the concept of reapproximation-based discrete modeling in Sec. 6.1. Given a
source Dirac mixture of many components representing an unknown directional distribution, the
on-manifold Dirac mixture reapproximation (MDMR) paradigm is established in Sec. 6.2 to yield a
target Dirac mixture with configurable numbers of components while respecting the underlying
domain topology. As further showcased in Sec. 6.3 and Sec. 6.4 with MDMR-variants on various
directional manifolds, the target Dirac components exhibit a deterministic layout that is adaptive
to the shape of underlying dispersion, thereby considerably improving the representation efficiency
of discrete probabilistic models. Built upon the hyperspherical variant of the proposed MDMR, we
further introduce a two-stage reapproximation & reconstruction (R&R) procedure in Sec. 6.5 for
continuous modeling of unknown distributions on S𝑑−1 (𝑑 ≥ 3) in the form of von Mises–Fisher
mixtures. Furthermore, we integrate the proposed MDMR paradigm into the generic discrete
filtering scheme given in Sec. 5.2 and introduce the on-manifold reapproximation discrete filter
(MRDF) in Sec. 6.6 for nonparametric directional estimation with unknown form of system noise.
We showcase the proposed MRDF with the customization to unit hyperspheres, and underline its
superior performance in nonlinear spherical estimation over parametric and Monte Carlo-based
directional filters.

6.1 Efficient Discrete Modeling via Reapproximation

As previously shown in Chapter 5, Dirac mixtures provide an intuitive solution to representing
arbitrary directional distributions in a nonparametric manner. Given raw samples of empirical
data collected from a stochastic process, a Dirac mixture model can be established by placing
each component on each sample point and associating it with the corresponding weight. However,
such a naive modeling solution is inefficient due to the inherent randomness of raw samples.
In [71], an optimization-based scheme was proposed for reducing Dirac mixture components in
Euclidean spaces. There, the Cramér–von Mises distance (CvMD) was generalized for measuring the
statistical divergence between two multivariate Dirac mixtures based on the concept of the localized
cumulative distribution with an isotropic Gaussian kernel. Consequently, a large set of Euclidean
samples can be reduced to a sample set of smaller size in the sense of least CvMD. The approach has
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the merit of establishing smooth characterization of discrete probabilistic models, further enabling
the optimization-based scheme for reduction. However, computing the proposed metric introduces
approximations at several stages and relies on a fixed weighting scheme. Moreover, the source and
target samples are required to be centralized at the same spot. As an extension to directional
domains, a heuristic approach was introduced in [102] for the unit sphere S2. Since this extension
is essentially a transformation from the linear version w.r.t. the spherical coordinate system, the
aforementioned issues remain unresolved, and further generalization to generic directional domains
is hardly feasible.

In the upcoming section of this chapter, we propose a paradigm of on-manifold Dirac mixture
reapproximation to enable efficient discrete modeling of unknown and arbitrary directional distri-
butions given a source Dirac mixture of many components. The paradigm is developed based on
theoretically sound derivations and is presented in a unified fashion. By introducing the new concept
of the on-manifold localized cumulative distribution (MLCD), the on-manifold Cramér–von Mises
distance (MCvMD) is established for quantifying the statistical divergence between Dirac mixtures
adaptively to the confining topological structure. Optimally preserving the probability mass of the
source Dirac mixture in the least-MCvMD sense, the target Dirac mixture reapproximates the
underlying unknown distribution with configurable number of components in a dispersion-adaptive
layout. Customizing the generic MDMR procedure for a certain directional manifold only requires
selecting a proper kernel with a geometry-aware distance metric and a corresponding weighting
function. For showcasing the general applicability of the MDMR paradigm, we provide several
variants, including ones for the unit circle, unit hyperspheres of arbitrary dimensions, the planar
dual quaternion manifold, and the unit dual quaternion manifold. Optimization of the MCvMD
is confined to the underlying manifold structure. Instead of implicitly handling the geometric
constraints (e.g., via Lagrange multipliers), we employ the Riemannian optimization scheme [103]
with inherent consideration of the confining geometry for better convergence properties. For that,
we provide closed-form gradients and Hessians in symbolic form to guarantee runtime performance.

6.2 On-Manifold Dirac Mixture Reapproximation: A Unified Paradigm

Suppose we are provided with a source Dirac mixture of many components placed at raw samples
from empirical directional data. We aim to reduce the influence of the randomness in raw data
without introducing strong assumptions imposed by parametric models. For that, we choose
to reapproximate the unknown underlying distribution on the manifold M using another Dirac
mixture of fewer components at more representative locations.

6.2.1 Problem Formulation

For a source Dirac mixture of components located at a sample set ÙX = {Û𝑥𝑖}Û𝑛𝑖=1 ⊂ M on the
manifold M with weights {Û𝜈𝑖}Û𝑛𝑖=1, its density function is expressed as

𝑓ÙX(𝑥) =
Û𝑛∑︁

𝑖=1
Û𝜈𝑖 𝛿(𝑥− Û𝑥𝑖) , with

Û𝑛∑︁
𝑖=1
Û𝜈𝑖 = 1 (6.1)

normalizing the sample weights. As introduced in (5.1), 𝛿(𝑥− Û𝑥𝑖) denotes the Dirac delta function
that characterizes the mass cluster around each sample Û𝑥𝑖. The desired target Dirac mixture is
equipped with components of a much smaller size 𝑛≪ Û𝑛 placed at the sample set X = {𝑥𝑖}𝑛

𝑖=1 ⊂M,
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reapproximating the underlying distribution in the form

𝑓X(𝑥) =
𝑛∑︁

𝑖=1
𝜈𝑖 𝛿(𝑥− 𝑥𝑖) , with

𝑛∑︁
𝑖=1

𝜈𝑖 = 1 . (6.2)

As previously mentioned, the reapproximation scheme is built upon the minimization of a certain
metric quantifying the statistical divergence D between the two Dirac mixtures located at the
source and target sets (ÙX and X, respectively). In general, this procedure can be formulated as1

X* = arg min
X⊂M

D
(
X,ÙX) . (6.3)

Designing a meaningful expression D
(
X,ÙX) for measuring the statistical divergence between

two Dirac mixtures is not as trivial as it is for two continuous probabilistic models. The major
theoretical obstacle lies in the fact that the two discrete models do not share any support, thereby
invalidating the applicability of typical choices such as the Kullback–Leibler divergence or the
Hellinger distance. For real scalar random variables, the empirical distribution function can be
exploited for establishing such measures based on the cumulative distribution. But a straightforward
extension to the multivariate case leads to a nonunique expression. As a viable modification,
the localized cumulative distribution in [71] provides an extension for the concept of cumulative
distribution from scalar to multivariate Euclidean spaces by incorporating an isotropic Gaussian
kernel into the integration. This further induces a multivariate generalization of the Cramér–von
Mises distance for measuring the difference of two discrete models in continuous domains in a
unique and symmetric manner. In reference to this basic approach for Euclidean spaces, we
introduce a generic design for on-manifold Dirac mixture reapproximation shown in the upcoming
sections.

6.2.2 On-Manifold Localized Cumulative Distribution

Definition 1: Given a directional random variable 𝑥 ∈M following a probability density function
𝑓 : M→ R+, its on-manifold localized cumulative distribution (MLCD) is defined as

F (𝛼, 𝜏) =
∫︁
M

𝑓(𝑥) k(𝑥; 𝛼, 𝜏) d 𝑥 .

k(𝑥; 𝛼, 𝜏) denotes a manifold-specific kernel function located at 𝛼 ∈M that is isotropic and smooth,
with 𝜏 > 0 characterizing the kernel concentration.

Given the definition above, the MLCD of the source Dirac mixture in (6.1) followsÙF (𝛼, 𝜏) =
∫︁
M

Û𝑛∑︁
𝑖=1
Û𝜈𝑖 𝛿(𝑥− Û𝑥𝑖) k(𝑥; 𝛼, 𝜏) d𝑥 =

Û𝑛∑︁
𝑖=1
Û𝜈𝑖 k(Û𝑥𝑖; 𝛼, 𝜏) . (6.4)

Similarly, the target MLCD is expressed as

F (𝛼, 𝜏) =
∫︁
M

𝑛∑︁
𝑖=1

𝜈𝑖 𝛿(𝑥− 𝑥𝑖) k(𝑥; 𝛼, 𝜏) d𝑥 =
𝑛∑︁

𝑖=1
𝜈𝑖 k (𝑥𝑖; 𝛼, 𝜏) . (6.5)

1 For brevity, the weights of the Dirac components in the objective of (6.3) are not written as inputs, but they are considered
in the actual computation as shown later.
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We provide the choice of topology-aware kernel functions respecting specific directional manifolds
at a later stage in Sec. 6.3 and Sec. 6.4 [51, 52]. Based thereon, the proposed MLCD yields a
local characterization of the underlying unknown distribution w.r.t. the kernel location 𝛼 and the
concentration parameter 𝜏 .

6.2.3 On-Manifold Cramér–von Mises Distance

Given the target and source Dirac mixtures 𝑓X and 𝑓ÙX, respectively, the on-manifold Cramér–von
Mises distance (MCvMD) quantifies their statistical divergence based on their MLCDs F (𝛼, 𝜏)
and ÙF (𝛼, 𝜏) in the form

D(X,ÙX) =
∫︁
R+
W(𝜏)

∫︁
M

(
F (𝛼, 𝜏)− ÙF (𝛼, 𝜏)

)2 d𝛼 d𝜏 . (6.6)

W(𝜏) is a continuous weighting function that regulates the impact of the concentration 𝜏 in the
kernel function. The MCvMD above integrates the weighted squared difference between the two
MLCDs over possible kernel locations 𝛼 ∈ M and concentration parameters 𝜏 > 0. Further, we
expand the expression in (6.6) and obtain the objective function in (6.3) following

D(X,ÙX) =: D1(X)− 2D2(X,ÙX) +D3(ÙX) ,

with the three components expressed as

D1(X) =
∫︁
R+
W(𝜏)

∫︁
M
F 2(𝛼, 𝜏) d𝛼 d𝜏 ,

D2(X,ÙX) =
∫︁
R+
W(𝜏)

∫︁
M
F (𝛼, 𝜏) ÙF (𝛼, 𝜏) d𝛼 d𝜏 ,

D3(ÙX) =
∫︁
R+
W(𝜏)

∫︁
M
ÙF 2(𝛼, 𝜏) d𝛼 d𝜏 .

By substituting the source and target MLCDs, ÙF (𝛼, 𝜏) and F (𝛼, 𝜏), with their formulae in (6.4)
and (6.5), respectively, the three components above then follow

D1(X) =
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝜈𝑖 𝜈𝑗

∫︁
R+
W(𝜏)

∫︁
M

k(𝑥𝑖; 𝛼, 𝜏) k(𝑥𝑗; 𝛼, 𝜏) d𝛼 d𝜏 ,

D2(X,ÙX) =
𝑛∑︁

𝑖=1

Û𝑛∑︁
𝑘=1

𝜈𝑖 Û𝜈𝑘

∫︁
R+
W(𝜏)

∫︁
M

k(𝑥𝑖; 𝛼, 𝜏) k(Û𝑥𝑘; 𝛼, 𝜏) d𝛼 d𝜏 ,

D3(ÙX) =
Û𝑛∑︁

𝑘=1

Û𝑛∑︁
𝑙=1
Û𝜈𝑘 Û𝜈𝑙

∫︁
R+
W(𝜏)

∫︁
M

k(Û𝑥𝑘; 𝛼, 𝜏) k(Û𝑥𝑙; 𝛼, 𝜏) d𝛼 d𝜏 .

(6.7)

The three components in (6.7) have the same form of summands, which involves integrating
the product of kernel function values at sample pairs over the on-manifold kernel locations and
concentrations. We extract this general form and express it as the MCvMD unit

Q(𝑢, 𝑣) =
∫︁
R+
W(𝜏)P(𝑢, 𝑣, 𝜏) d𝜏 , (6.8)

with the integral over kernel locations formulated as

P(𝑢, 𝑣, 𝜏) =
∫︁
M

k(𝑢; 𝛼, 𝜏) k(𝑣; 𝛼, 𝜏) d𝛼 . (6.9)
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Based on the MCvMD unit expressed above, the components of the objective function D(X,ÙX) =
D1(X)− 2D2(X,ÙX) +D3(ÙX) in (6.3) then boil down to conciser forms as follows

D1(X) =
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝜈𝑖 𝜈𝑗 Q(𝑥𝑖, 𝑥𝑗) ,

D2(X,ÙX) =
𝑛∑︁

𝑖=1

Û𝑛∑︁
𝑘=1

𝜈𝑖 Û𝜈𝑘 Q(𝑥𝑖, Û𝑥𝑘) ,

D3(ÙX) =
Û𝑛∑︁

𝑘=1

Û𝑛∑︁
𝑙=1
Û𝜈𝑘 Û𝜈𝑙 Q(Û𝑥𝑘, Û𝑥𝑙) .

(6.10)

In the resulting expression of the proposed distance measure, both the kernel function in (6.9)
and the weighting function in (6.8) are yet to be specified. In principle, the distance metric in
the kernel function needs to cohere with the underlying manifold geometry. Moreover, it needs to
have isotropic dispersion, such that the induced integral is symmetric and unique. For instance,
a von Mises–Fisher-like kernel k(𝑥; 𝛼, 𝜏) = exp(𝜏𝛼⊤𝑥) can be chosen for hyperspherical Dirac
mixture reapproximation as given in [51]. As a result, the resulting MCvMD only depends on
the relative geodesic distance w.r.t. 𝑢⊤𝑣 between the two sample points 𝑢 and 𝑣 in (6.9). The
weighting functionW(𝜏) in (6.8) can be chosen freely as long as the resulting product is integrable.
However, in consideration of a practical implementation and runtime efficiency, we propose to
choose it in a specific way such that the integral (6.8) yields a closed-form solution.

In the upcoming Sec. 6.3, we elaborate customization of the proposed MDMR paradigm to unit
hyperspheres S𝑑−1 of arbitrary dimensions 𝑑 ≥ 3 [51]. Afterward, we briefly show several other
MDMR-variants for other common directional domains with necessary kernel and weighting
functions in Sec. 6.4. Based on the hyperspherical variant of MDMR, a reapproximation &
reconstruction procedure is introduced in Sec. 6.5 for continuous modeling of unknown distributions
on S𝑑−1 in the form of von Mises–Fisher mixtures.

6.3 Hyperspherical Dirac Mixture Reapproximation

Random variables on unit hyperspheres S𝑑−1 ⊂ R𝑑 (𝑑 ≥ 3) appear in various applications such as
quaternion-based rigid body motion estimation [1], orientation tracking [78], scene understanding [6,
19,84], and text document representation using vector space models [7, 104].

As previously mentioned, we choose a von Mises–Fisher-like kernel k(𝑥; 𝛼, 𝜏) = exp(𝜏𝛼⊤𝑥) for the
hyperspherical MDMR-variant, and the integral in (6.9) is then specified as

P(𝑢, 𝑣, 𝜏) =
∫︁
S𝑑−1

exp
(
𝜏 (𝑢 + 𝑣)⊤𝛼

)
d𝛼 ,

with kernel locations 𝛼 ∈ S𝑑−1 (𝑑 ≥ 3). We normalize the sum of unit vectors 𝑢 and 𝑣 to be’𝑢 + 𝑣 = (𝑢 + 𝑣)/‖𝑢 + 𝑣‖, with ‖𝑢 + 𝑣‖ = (2 + 2 𝑢⊤𝑣)1/2 being the norm. The integral then follows

P(𝑢, 𝑣, 𝜏) =
∫︁
S𝑑−1

exp
(
𝜏‖𝑢 + 𝑣‖’𝑢 + 𝑣

⊤
𝛼
)

d𝛼 ,
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As evident from the definition in (2.5), the formula above induces the normalization constant of
the von Mises–Fisher distribution VMF

(
𝛼;’𝑢 + 𝑣, 𝜏(2 + 2 𝑢⊤𝑣)1/2). According to (2.6), we obtain

P(𝛿, 𝜏) =
(2𝜋)𝑑/2 I𝑑/2−1

(
𝜏
√

2 + 2𝛿
)(

𝜏
√

2 + 2𝛿
)𝑑/2−1 , with 𝛿 = 𝑢⊤𝑣

quantifying the hyperspherical distance coherently to the manifold geometry. I𝑑/2−1 denotes the
modified Bessel function of the first kind and of order 𝑑/2− 1. Further, we design the weighting
function in (6.8) to be

W(𝜏) = exp(−𝜖𝜏) 𝜏 𝑑/2−2 , (6.11)
with 𝜖 > 2 being precomputed given the configuration. The integral in (6.8) is then derived as

Q(𝛿) = (2𝜋)𝑑/2

(
√

2 + 2𝛿 )𝑑/2−1

∫︁ ∞

0
𝑒−𝜖𝜏 𝜏−1I𝑑/2−1

(
𝜏
√

2 + 2𝛿
)

d𝜏 . (6.12)

The right-hand side of the formula above refers to the Laplace transform of functions in the form
𝜏−1I𝜈(𝑎𝜏), which is given by [105, 17.13.112] according to the formula

L
{

𝜏−1I𝜈(𝑎𝜏)
}

(𝜖) =
∫︁ ∞

0
𝑒−𝜖𝜏 𝜏−1I𝜈(𝑎𝜏) d𝜏 = 𝜈−1𝑎𝜈

(√
𝜖2 − 𝑎2 + 𝜖

)−𝜈 (6.13)

under the condition Re(𝜖) > Re(𝑎). As we have 𝜖 > 2 and the hyperspherical distance metric 𝛿 is
in [−1, 1] for 𝑎 =

√
2 + 2𝛿, this condition is fulfilled, and we obtain the following closed form of

the integral (6.12) over possible concentration parameters

Q(𝛿) = (2𝜋)𝑑/2

(
√

2 + 2𝛿 )𝑑/2−1
L
{

𝜏−1I𝑑/2−1
(
𝜏
√

2 + 2𝛿
)}

(𝜖)

= (2𝜋)𝑑/2

𝑑/2− 1

(√
𝜖2 − 2𝛿 − 2 + 𝜖

)1−𝑑/2
.

(6.14)

Given the MCvMD unit in (6.8) customized to hyperspheres above, the hyperspherical Cramér–von
Mises distance (HCvMD) according to (6.10) then consists of the following components

D1(X) =
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝜈𝑖 𝜈𝑗 Q(𝑥𝑖, 𝑥𝑗) = (2𝜋)𝑑/2

𝑑/2− 1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜈𝑖 𝜈𝑗

(»
𝜖2 − 2 𝑥⊤

𝑖 𝑥𝑗 − 2 + 𝜖
)1−𝑑/2

,

D2(X,ÙX) =
𝑛∑︁

𝑖=1

Û𝑛∑︁
𝑘=1

𝜈𝑖 Û𝜈𝑘 Q(𝑥𝑖, Û𝑥𝑘) = (2𝜋)𝑑/2

𝑑/2− 1

𝑛∑︁
𝑖=1

Û𝑛∑︁
𝑘=1

𝜈𝑖 Û𝜈𝑘

(»
𝜖2 − 2 𝑥⊤

𝑖 Û𝑥𝑘 − 2 + 𝜖
)1−𝑑/2

,

D3(ÙX) =
Û𝑛∑︁

𝑘=1

Û𝑛∑︁
𝑙=1
Û𝜈𝑘 Û𝜈𝑙 Q(Û𝑥𝑘, Û𝑥𝑙) = (2𝜋)𝑑/2

𝑑/2− 1

Û𝑛∑︁
𝑘=1

Û𝑛∑︁
𝑙=1
Û𝜈𝑘 Û𝜈𝑙

(»
𝜖2 − 2 Û𝑥⊤

𝑘 Û𝑥𝑙 − 2 + 𝜖
)1−𝑑/2

.

(6.15)

As shown above, the proposed MCvMD specified with the von Mises–Fisher-like kernel and
the weighing function in (6.11) quantifies the statistical divergence between two Dirac mixtures
analytically on arbitrary-dimensional unit hyperspheres S𝑑−1 of 𝑑 ≥ 3. Due to the isotropic
dispersion of the kernel function, the metric only depends on the relative distance between
pairs of samples respecting the manifold geometry (here, according to the curve length). This
leads to a symmetric and unique measure for comparing the probability mass characterized by
two hyperspherical discrete models. Furthermore, the closed-form expressions given in (6.15)
are continuous functions w.r.t. the location on the unit hypersphere, leading to computational
advantage for the optimization-based reapproximation scheme.
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6.3.1 Reapproximation via Riemannian Optimization

Based on the HCvMD components formulated in (6.15), we now concretize the optimization
problem in (6.3) for hyperspherical Dirac mixture reapproximation (HDMR). Considering the
implementation convenience and runtime efficiency, elements in the source and target sets (ÙX and
X, respectively) are concatenated into matrices ÙX and X, respectively. The optimization problem
for reapproximation is then reformulated into the form

X* = arg min
X∈OB(𝑑,𝑛)

D(X,ÙX) , (6.16)

with the matrix variable X belonging to the oblique manifold OB(𝑑, 𝑛) ⊂ R𝑑×𝑛 as each column
vector in X is confined to the unit hypersphere S𝑑−1 ⊂ R𝑑 [85]. From the general perspective
of Dirac mixture reapproximation for directional distributions, the desired target Dirac mixture
supports are always obtained by solving a constrained optimization problem similar to (6.16) with
the constraint imposed by the underlying manifold geometry. For this, conventional solutions
handle the constraint implicitly by integrating it into the objective function, e.g., via a Lagrange
multiplier. In the proposed MDMR paradigm, however, we choose the Riemannian optimization
framework for explicit handling of the manifold constraints instead of reformulating the objective
to achieve better numerical and convergence properties [85,106].

6.3.2 Implementation

As shown in the weighting function (6.11), the parameter 𝜖 can in theory be chosen freely as long as
𝜖 > 2 holds, which is required by the Laplace transform-based closed form in (6.14). Considering the
numerical stability of the optimization in practice, 𝜖 is given by a piecewise function of continuous
form as follows

𝜖 =
®

2 + 𝑛−𝑑 , for 𝑛 ≤ 𝑛𝜖

2 + (𝑑 · 𝑛)−1 , otherwise
. (6.17)

By guaranteeing the continuity of the function (6.17), the threshold 𝜖 is then determined according
to the dimension 𝑑 and the number 𝑛 of target Dirac components.

Given the closed-form HCvMD components in (6.15), the objective in (6.16) is a real-valued and
smooth function over the oblique manifold OB(𝑑, 𝑛) ⊂ R𝑑×𝑛. Therefore, we choose to exploit the
Riemannian trust-region (RTR) approach based on the implementation in [86] for reapproximation
in the sense of least HCvMD. Exploiting the RTR method for solving optimization problems
on directional manifolds requires the gradients and Hessians of the objective w.r.t. the variable
in its ambient space. Based thereon, the Riemannian gradients and Hessians are derived with
consideration of the manifold geometry. Though methods such as automatic differentiation or
finite difference are applicable for such purposes, symbolic forms are almost always preferable given
their advantage in numerical stability and runtime efficiency. For the case of hyperspherical Dirac
mixture reapproximation, we provide symbolic forms of the required gradients and Hessians in
Appendix C.1.2 based on the generic expressions given in Appendix C.1.1. Moreover, we set the
target Dirac components to be of equal weights, whereas the source Dirac components are allowed
to have uniform or non-uniform weights. For demonstrating the efficacy of the MDMR paradigm
specified on S𝑑−1, namely, the HDMR method, we show the following examples in various scenarios
of hyperspherical discrete modeling [51].
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Example 9: We first perform the proposed hyperspherical Dirac mixture reapproximation on the
unit sphere S2 using Û𝑛 = 20000 samples drawn randomly from the following continuous distributions
(therefore, the source Dirac mixture components are equally weighted).

1. We exploit von Mises–Fisher distributions VMF([ 0, 0, 1 ]⊤, 𝜅) as introduced in Sec. 2.2.1 with
concentrations 𝜅 ∈ {6, 12, 18}. The target Dirac mixtures are set to have 𝑛 ∈ {5, 20, 30}
components.

2. We configure Bingham distributions B(C) as introduced in Sec. 2.2.2 with parameter matrices
C ∈ {−diag(20, 4, 0),−diag(10, 10, 0),−diag(10, 4, 0)}. Reapproximations to target Dirac
mixtures of 𝑛 ∈ {20, 42, 82} components are performed.

Reapproximation results for the two scenarios above are depicted in Fig. 6.1 and Fig. 6.2. Given
source Dirac mixtures of supports at random samples (green dots), the proposed HDMR method
delivers convincing results on the unit sphere – discrete models given by the target Dirac mixtures
(red dots) reapproximate underlying continuous distributions in a dispersion-adaptive manner
with layouts attaining deterministic patterns. Furthermore, additional topological properties of
spherical uncertainties, e.g., the antipodal symmetry of Bingham distributions, are also preserved
via reapproximation. Compared with a random sampling-based discrete model, the one given by the
HDMR represents the underlying distribution in a much more efficient way.

Example 10: We synthesize von Mises–Fisher mixtures on the unit sphere S2 of densities
𝑓VMFM(𝑥) = ∑︀3

𝑖=1 1/3·𝑓VMF(𝑥; 𝛼𝑖, 𝜅𝑖), with means (𝛼1, 𝛼2, 𝛼3) = (1/
√

5·[ 0, 2, 1 ]⊤, [ 0, 1, 0 ]⊤, 1/
√

5·
[ 0, 2,−1 ]⊤) and concentrations (𝜆1, 𝜆2, 𝜆3) ∈ {(8, 5, 2), (20, 15, 12), (24, 24, 24)}. Instead of draw-
ing random samples for obtaining the source Dirac mixture, the HEP algorithm introduced in
Sec. 5.1.1 is employed to generate Û𝑛 = 5000 grid points for placing the Dirac components, with
weights being the normalized PDF values at the grid points. The target discrete models are configured
with 𝑛 ∈ {7, 50, 80} components.

As shown in Fig. 6.3, the resulting target Dirac mixtures with equally weighted components (red
dots) approximate the underlying distributions in a dispersion-aware manner. Compared with the
grid-based Dirac mixtures (green dots), the HDMR-based discrete models exhibit evidently better
representation efficiency.

Example 11: The MDMR paradigm is further applied to the unit hypersphere S3 in accordance with
the SO(3) representation of unit quaternions. Taking the definition in (3.6), we synthesize a random
unit quaternion variable 𝑥 = [ cos(𝜃/2), sin(𝜃/2) 𝑢⊤]⊤ ∈ S3 with the rotation angle following a von
Mises distribution2 VM(𝜋/10, 50) and the axis a von Mises–Fisher mixture given by 𝑓VMFM(𝑢) =∑︀3

𝑖=1 1/3·𝑓VMF(𝑢; 𝛼𝑖, 200), with means (𝛼1, 𝛼2, 𝛼3) = (1/
√

2·[ 0, 1, 1 ]⊤, [ 0, 1, 0 ]⊤, 1/
√

2·[ 0, 1,−1 ]⊤).Û𝑛 = 20000 random samples are drawn from the synthesized underlying distribution to provide a
source Dirac mixture, based on which HDMRs to target Dirac mixtures of 𝑛 ∈ {3, 7, 15} components
are performed.

As depicted in Fig. 6.4, we visualize unit quaternion quantities by rotating an initial point at
[ 1, 0, 0 ]⊤ according to (3.7). The proposed HDMR method also shows evident efficacy on the unit
hypersphere S3, yielding target Dirac mixtures of layouts adaptive to the irregular shape of the
underlying uncertainty.

2 Similar to the von Mises–Fisher distribution in Sec. 2.2.1, the first parameter of a von Mises distribution is the mean, and
its second parameter denotes the concentration.
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Figure 6.1.: Reapproximations (depicted by red dots) of von Mises–Fisher distributions on S2 using source
Dirac mixtures at random samples (small green dots) in Example 9.1.
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Figure 6.2.: Reapproximations (depicted by red dots) of Bingham distributions on S2 using source Dirac
mixtures at random samples (small green dots) in Example 9.2.
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Figure 6.3.: Reapproximations (depicted by red dots) of von Mises–Fisher mixtures on S2 using source Dirac
mixtures on HEP grids in Example 10. Grid points are plotted in green with sizes proportional to the underlying
densities (i.e., weights of source Dirac components).

𝑛 = 3 𝑛 = 7 𝑛 = 15

Figure 6.4.: Reapproximations (depicted by red dots) of a synthesized distribution on S3 using source Dirac
mixtures at random samples (small green dots) in Example 11.
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6.4 MDMR-Variants for Other Directional Domains

For further demonstrating the applicability of the proposed MDMR paradigm for non-spherical
directional domains, we present its customization to the unit circle and the manifolds of planar/unit
dual quaternions. For the sake of conciseness, in this section, we only provide necessary adaptations
up to the stage of producing functional MDMR units in (6.8) and its corresponding gradient
w.r.t. single point location (similar to (C.5)). Complete MCvMD-related terms regarding (6.10)
(including gradients and Hessians) can be derived with reference to the generic expressions in
Sec. C.1.1 and the customization procedure detailed for hyperspheres in Sec. 6.3.

6.4.1 Unit Circle

The unit circle resembles the geometric structure of the unit hyperspheres presented in Sec. 6.3.
We thus set up a similar kernel function based on the von Mises distribution [12] in the form

k(𝑥; 𝛼, 𝜏) = exp(𝜏 𝛼⊤𝑥) , ∀𝑥 ∈ S1 ,

with 𝛼 ∈ S1 being the location and 𝜏 > 0 the concentration of the kernel. Similar to the
hyperspherical case, the integral over kernel locations in (6.9) then follows the normalization
constant of the von Mises distribution VM

(’𝑢 + 𝑣, 𝜏(2 + 2 𝑢⊤𝑣)1/2), leading to

P(𝑢, 𝑣, 𝜏) = 2𝜋I0
(
𝜏 (2 + 2 𝑢⊤𝑣)1/2) =: 2𝜋I0

(
𝜏 (2 + 2 𝛿(𝑢, 𝑣))1/2) , (6.18)

with 𝛿(𝑢, 𝑣) = 𝑢⊤𝑣 being the distance metric in accordance with the circular geometry. I0 denotes
the modified Bessel function of the first kind and zeroth order. By specifying the weighting function
W(𝜏) in (6.8) as

W(𝜏) = exp(−𝜖𝜏)
and following a procedure similar to (6.13) given the Laplace transform formula from [105, 17.13.109],
we obtain the following closed-form MCvMD unit customized to the unit circle

Q(𝛿) =
∫︁
R+
W(𝜏)P(𝑢, 𝑣, 𝜏) d𝜏 = 2𝜋

(
𝜖2 − 2(1 + 𝛿)

)−1/2 (6.19)

under the condition 𝜖 > 2 (valid since 𝛿 ∈ [−1, 1]). We provide a brief derivation of the gradient
and the Hessian of the circular CvMD unit w.r.t. sample location in Appendix C.1.3. The following
example demonstrates the performance of the MDMR paradigm customized for the circular domain.

Example 12: We synthesize a von Mises mixture on the unit circle of density 𝑓VMM(𝜃) =∑︀3
𝑖=1 1/3·𝑓VM(𝜃; 𝛼𝑖, 𝜅𝑖), with means3 at (𝛼1, 𝛼2, 𝛼3) = (−𝜋/2, 𝜋, 0) and concentrations (𝜅1, 𝜅2, 𝜅3) =

(20, 50, 20). We use Û𝑛 = 10000 equidistantly-spaced grid points to place the source Dirac components,
which are then weighted by the underlying density function (with normalization) as also shown in
Example 10. We deploy 𝑛 ∈ {15, 25, 42} target Dirac components to reapproximations.

As shown in Fig. 6.5, the circular variant of the MDMR paradigm functions well, yielding Dirac
mixtures of fewer components (red dots) adaptively to the shape of the continuous densities (blue
curves) on S1. Thanks to the von Mises-based kernel function, the periodicity in circular data is
automatically addressed by the reapproximation method.

3 For brevity, here we denote the mean of each von Mises component as angles instead of vectors on S1.
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𝑛 = 15 𝑛 = 25 𝑛 = 42

Figure 6.5.: Reapproximations (depicted by red dots) of a synthesized circular distribution (blue curves) using
source Dirac mixtures at uniformly-spaced grid points in Example 12.

6.4.2 Manifolds of Dual Quaternions

As for composite directional domains, we customize the MDMR paradigm to the manifolds of
planar dual quaternions and unit dual quaternions that are introduced in Sec. 3.3.3 and Sec. 3.3.1,
respectively. As the two variants resemble each other to a large degree, we only demonstrate the
customization procedure for the planar dual quaternion manifold [52]. However, we show examples
for both variants of on-manifold Dirac mixture reapproximation.

Defining the kernel function in the MDMR paradigm for composite directional domains requires
consideration on not only the topological structure of each individual component domain but
also the probabilistic correlation between them. Meanwhile, a separable kernel function is always
preferable for convenience of derivation and computation. According to the manifold structure
of planar dual quaternions 𝑥 = [ 𝑥⊤

r , 𝑥⊤
s ]⊤ ∈ S1 × R2 ⊂ R4, we tailor the kernel function to be

separable and isotropic [52] as k(𝑥; 𝛼, 𝜏) = kr(𝑥r; 𝛼r, 𝜏) ks(𝑥s; 𝛼s, 𝜏), with

kr(𝑥r; 𝛼r, 𝜏) = exp(𝜏 𝛼⊤
r 𝑥r) and

ks(𝑥s; 𝛼s, 𝜏) = exp
(
− 𝜏 (𝑥s − 𝛼s)⊤(𝑥s − 𝛼s)

)
,

being the component kernels for the real and dual parts, respectively. The two component kernels
share one concentration parameter 𝜏 > 0 for characterizing the probabilistic correlation between
S1 and R2. Consequently, the integral over kernel locations in (6.9) can be decomposed into
P(𝑢, 𝑣, 𝜏) = Pr(𝑢r, 𝑣r, 𝜏)Ps(𝑢s, 𝑣s, 𝜏). Here, the integral over real part kernel locations 𝛼r ∈ S1 is
identical to the circular case given by (6.18), namely,

Pr(𝑢r, 𝑣r, 𝜏) =
∫︁
S1

kr(𝑢r; 𝛼r, 𝜏) kr(𝑣r; 𝛼r, 𝜏) d𝛼r = 2𝜋I0
(
𝜏(2 + 2 𝑢⊤

r 𝑣r)1/2) .

The integral Ps(𝑢s, 𝑣s, 𝜏) over dual part kernel locations 𝛼s ∈ R2 can be obtained based on the
Gaussian identity given by [107, Appendix D] as follows [52]

Ps(𝑢s, 𝑣s, 𝜏) =
∫︁
R2

ks(𝑢s; 𝛼s, 𝜏) ks(𝑣s; 𝛼s, 𝜏) d𝛼s

=
(𝜋

𝜏

)2 ∫︁
R2

𝑓N

(
𝑢s; 𝛼s,

1
2𝜏

I2×2

)
𝑓N

(
𝑣s; 𝛼s,

1
2𝜏

I2×2

)
d𝛼s

=
(𝜋

𝜏

)2
𝑓N

(
𝑣s; 𝑢s,

1
𝜏

I2×2

) ∫︁
R2

𝑓N (𝛼s) d𝛼s

= 𝜋

2𝜏
exp

(
− 𝜏

2(𝑢s − 𝑣s)⊤(𝑢s − 𝑣s)
)

.
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Consequently, we have

P(𝑢, 𝑣, 𝜏) = 𝜋2

𝜏
I0
(
𝜏(2 + 2 𝑢⊤

r 𝑣r)1/2) exp
(
− 𝜏

2(𝑢s − 𝑣s)⊤(𝑢s − 𝑣s)
)

=: 𝜋2

𝜏
I0
(
𝜏(2 + 2 𝛿r)1/2) exp

(
− 𝜏

2𝛿s
)

,

with 𝛿r = 𝑢⊤
r 𝑣r and 𝛿s = ‖𝑢s − 𝑣s‖2 indicating distance metrics on the component domains of the

real and dual parts, respectively. We further design the weighting function as

W = 𝜏 exp(−𝜖𝜏) ,

and the MCvMD unit in (6.8) is then specified as

Q(𝛿r, 𝛿s) =
∫︁
R+
W(𝜏)P(𝛿, 𝜏) d𝜏

=
∫︁
R+

𝜋2 exp
(
− (𝜖 + 𝛿s/2)𝜏

)
I0
(
𝜏(2 + 2𝛿r)1/2) d𝜏 .

(6.20)

According to [105, Sec. 6.611.4], the expression∫︁
R+

exp(−𝑎𝜏)I0(𝑏𝜏) d𝜏 = 1/
√

𝑎2 − 𝑏2

holds under the conditions 𝑎, 𝑏 > 0 and 𝑎 > 𝑏. Since 𝜖 > 2 and 𝛿r ∈ [−1, 1], this prerequisite is
fulfilled for (6.20), leading to the closed-form expression

Q(𝛿r, 𝛿s) = 2𝜋2(
𝛿2

s + 4 𝜖 𝛿s − 8 𝛿r + 4 𝜖2 − 8
)1/2 . (6.21)

We provide the gradient of the customized MCvMD unit above in Appendix C.1.4. For avoiding
redundant derivations, the procedure of computing its Hessians is not provided (but included in
the implementation). Following a similar procedure, the MDMR can also be customized to the
unit dual quaternion manifold DH1. The upcoming examples further demonstrate the efficacy of
these two variants in the context of dual quaternion-based discrete modeling of uncertain rigid
body motions.

Example 13: We perform Dirac mixture reapproximation to uncertain planar dual quaternions
representing SE(2) states in the following synthetic scenarios.

1. An SE(2)-Bingham distribution PB(C) is parameterized according to (2.12) with submatrices
C1 = −101 · I2×2, C2 = 10 · I2×2 and C3 = −I2×2. Û𝑛 = 5000 random samples {Û𝑥𝑖}Û𝑛𝑖=1 are
drawn from the continuous distribution for a single-step propagation via Û𝑥𝑖 ⊠ Û𝑥𝑖 according to
the dual quaternion product in (3.20). Afterward, the propagated samples place the source
Dirac components of equal weights on S1 × R2 for reapproximations to target Dirac mixtures
of 𝑛 ∈ {20, 42, 60} components.

2. We set up von Mises distributions in the form VM(𝛼, 50) with means 𝛼 ∈ {𝜋/8, 𝜋/4, 3𝜋/8}
on the unit circle. For each setting, we discretize the circular range [ 0, 𝜋 ] with Û𝑛 = 2000
equidistantly-spaced grid points. For each grid point, we draw one random sample from
a Gaussian distribution N ([0.5, 0.5]⊤, 0.001 · I2×2) for incorporating the uncertain planar
translation. Based thereon, planar dual quaternion samples {Û𝑥𝑖}Û𝑛𝑖=1 are obtained via (3.19)
and weighted by the von Mises density of the angular component. A two-step propagation (i.e.,Û𝑥𝑖 ⊠ Û𝑥𝑖 ⊠ Û𝑥𝑖) is performed to place the source Dirac components with corresponding weights,
based on which reapproximations to target Dirac mixtures of 𝑛 = 6 components are performed.
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𝑛 = 20 𝑛 = 42 𝑛 = 60

Figure 6.6.: Reapproximations (depicted by red arrows) on the planar dual quaternion manifold using source
Dirac mixtures at random samples (small green arrows) in Example 13.1.

𝑛 = 6 𝑛 = 6 𝑛 = 6

Figure 6.7.: Reapproximations (depicted by red arrows) on the planar dual quaternion manifold in Example 13.2.
From left to right, the same source Dirac components are given different weights (proportional to sizes of the
green dots, most obtain weights close to zero) for reapproximations using the same number (𝑛 = 6) of target
Dirac components.

For visualization of planar dual quaternion quantities, we apply their SE(2) transformations to a
normal vector pointing towards [ 1, 0 ]⊤ at the origin according to the formula in (3.21). As depicted
in Fig. 6.6, the proposed MDMR scheme customized to S1 × R2 shows viable reapproximations for
the first scenario. Symmetries in the underlying dispersion characterized by the source (indicated by
green arrows) are also well-preserved in layouts of the target Dirac mixtures (red arrows). Fig. 6.7
further demonstrates reapproximation results for the second scenario. Weights of the source Dirac
components are indicated by the sizes of the green dots, and the setting above essentially creates a
counterclockwise shifting pattern in the figures (from left to right). Despite the complex dispersion
underlying on the planar dual quaternion manifold, the customized MDMR method functions
effectively, with the probabilistic correlations between the component domains well-interpreted.

Example 14: We further briefly showcase the MDMR-variant on the unit dual quaternion manifold
DH1 ⊂ R8 introduced in Sec. 3.3. Based on the SE(3) representation in (3.12), we assume the
uncertain angular component to follow a von Mises mixture distribution of density 𝑓VMM(𝜃) =∑︀3

𝑖=1 1/3 · 𝑓VM(𝜃; 𝛼𝑖, 25), with means (𝛼1, 𝛼2, 𝛼3) = (−𝜋/3, 𝜋/3, 0). Further, the uncertain rotation
axis follows a von Mises–Fisher distribution VMF(1/

√
3 · [ 1, 1, 1 ]⊤, 300), and the translation

75



Chapter 6. On-Manifold Dirac Mixture Reapproximation

𝑛 = 6 𝑛 = 30 𝑛 = 60

Figure 6.8.: Reapproximations (depicted by red arrows) on the unit dual quaternion manifold DH1 using
source Dirac mixtures at random samples (small green arrows) in Example 14.

follows a Gaussian distribution N ([ 10, 5, 5 ])⊤, 0.005 · I3×3). Û𝑛 = 10000 equally-weighted samples
{Û𝑥𝑖}Û𝑛𝑖=1 ⊂ DH1 are synthesized based on random sampling from the continuous distributions, after
which a single-step propagation is additionally performed via Û𝑥𝑖 ⊠ Û𝑥𝑖 according to (3.11) to provide
the source Dirac mixture. We perform reapproximations to target Dirac mixtures of 𝑛 ∈ {6, 30, 60}
components.

As depicted in Fig. 6.8, we transform a normal vector pointing toward [ 1, 0, 0 ]⊤ at the origin using
the unit dual quaternion quantities according to (3.13). Reapproximations using the MDMR-variant
on DH1 functions effectively under various configurations while preserving the correlation between
the real and dual parts. Compared with the source Dirac mixture produced by the Monte Carlo-based
scheme (green arrows), the proposed MDMR paradigm delivers more efficient discrete models for
representing complex dispersion in high-dimensional composite directional domains.

6.5 Hyperspherical Reapproximation and Reconstruction

Modeling unknown uncertainties in continuous form is still desired in certain scenarios, e.g., for
the purpose of sampling, quantifying probability densities at newly observed data, or applying
grid-based filters with continuous transition densities as introduced in Sec. 5.2. Therefore, we
further propose a method for continuous probabilistic modeling built upon the discrete model
produced by the MDMR paradigm. For clearness of explanation, we present this reconstruction
method on unit hyperspheres S𝑑−1 (𝑑 ≥ 3) based on the HDMR method elaborated in Sec. 6.3,
leading to the following two-stage reapproximation and reconstruction (R&R) procedure [51].

We propose to exploit a von Mises–Fisher mixture model as the continuous representation of the
unknown hyperspherical distribution that is initially approximated by the source Dirac mixture.
Given its reapproximation to the target Dirac mixture of the form (6.2), we place one component
of the von Mises–Fisher mixture at each target sample 𝑥𝑖 (equally weighted) in X with a joint
concentration 𝜆, inducing a density function in the following form

𝑓VMFM(𝑥;X, 𝜆) =
𝑛∑︁

𝑖=1

1
𝑛

𝑓VMF(𝑥; 𝑥𝑖, 𝜆)

=
𝑛∑︁

𝑖=1

𝜆𝑑/2−1

𝑛(2𝜋)𝑑/2 I𝑑/2−1(𝜆) exp(𝜆 𝑥⊤𝑥𝑖) .
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In order to determine the value of the concentration parameter 𝜆, we exploit the source Dirac
mixture at {Û𝑥𝑘}Û𝑛𝑘=1 of weights {Û𝜈𝑘}Û𝑛𝑘=1 in (6.1) using maximum likelihood estimation (MLE) based
on the log-likelihood-based formulation [108,109]

𝜆* = arg max
𝜆≥0

ß Û𝑛∑︁
𝑘=1
Û𝜈𝑘 ln

( 𝜆𝑑/2−1

I𝑑/2−1(𝜆)

𝑛∑︁
𝑖=1

exp(𝜆 Û𝑥⊤
𝑘 𝑥𝑖)

)™
. (6.22)

Using the substitution C(𝜆) = 𝜆𝑑/2−1

I𝑑/2−1(𝜆) , we then obtain

L(𝜆) =
Û𝑛∑︁

𝑘=1
Û𝜈𝑘 ln

(
C(𝜆)

𝑛∑︁
𝑖=1

exp(𝜆 Û𝑥⊤
𝑘 𝑥𝑖)

)
= ln

(
C(𝜆)

)
+

Û𝑛∑︁
𝑘=1
Û𝜈𝑘 ln

( 𝑛∑︁
𝑖=1

exp(𝜆 Û𝑥⊤
𝑘 𝑥𝑖)

)
as the objective function of the optimization for MLE. Further, we derive its first-order derivative
w.r.t. 𝜆 as

L′(𝜆) = d
d 𝜆

{
ln
(
C(𝜆)

)
+

Û𝑛∑︁
𝑘=1
Û𝜈𝑘 ln

( 𝑛∑︁
𝑖=1

exp(𝜆 Û𝑥⊤
𝑘 𝑥𝑖)

)}
= C

′(𝜆)
C(𝜆) +

Û𝑛∑︁
𝑘=1
Û𝜈𝑘

∑︀𝑛
𝑖=1 Û𝑥⊤

𝑘 𝑥𝑖 exp(𝜆 Û𝑥⊤
𝑘 𝑥𝑖)∑︀𝑛

𝑖=1 exp(𝜆 Û𝑥⊤
𝑘 𝑥𝑖)

.

(6.23)

Finding the zero of L′(𝜆) then yields the desired 𝜆* in the MLE problem of (6.22). For that, we
utilize the recurrence relation of differentiating the modified Bessel function (first kind) I𝑑/2−1(𝜆)
in C(𝜆). As shown in [7], it follows

I′
𝑑/2−1(𝜆) = I𝑑/2(𝜆) + 𝜆−1(𝑑/2− 1)I𝑑/2−1(𝜆) .

Thus, the first term in (6.23) boils down to

C′(𝜆)
C(𝜆) = I𝑑/2−1(𝜆)

𝜆𝑑/2−1 ·
(𝑑/2− 1)𝜆𝑑/2−2I𝑑/2−1(𝜆)− 𝜆𝑑/2−1I′

𝑑/2−1(𝜆)(
I𝑑/2−1(𝜆)

)2 = − I𝑑/2(𝜆)
I𝑑/2−1(𝜆) = −A𝑑(𝜆) ,

with A𝑑(𝜆) being the Bessel function ratio in the mean resultant vector of the von Mises–Fisher
distribution shown in (2.7). Then, solving the MLE problem in (6.22) is equal to solving equation
L′(𝜆) = 0, with

L′(𝜆) =
Û𝑛∑︁

𝑘=1
Û𝜈𝑘

∑︀𝑛
𝑖=1 𝑥⊤

𝑖 Û𝑥𝑘 exp(𝜆 𝑥⊤
𝑖 Û𝑥𝑘)∑︀𝑛

𝑖=1 exp(𝜆 𝑥⊤
𝑖 Û𝑥𝑘) −A𝑑(𝜆) , (6.24)

for which we tailor Newton’s method with closed-form Newton steps in Appendix C.2. In practice,
we suggest to exploit source Dirac mixtures of equally weighted components for the MLE problem
formulated in (6.22) [109]. The following example showcases the performance of the proposed
hyperspherical reapproximation & reconstruction scheme on the unit sphere S2 under various
configurations.

Example 15: Following two scenarios are considered for testing the proposed R&R scheme on S2.
For evaluating the reconstruction fidelity of a resulting von Mises–Fisher mixture, we determine its
Hellinger distance H [13] to the underlying true distribution.

1. We exploit the Bingham distribution B(C) with C = −diag(10, 4, 0) in Example 9.2 (depicted
in the last row of Fig. 6.2) as the underlying distribution. We take the same number of
random samples (Û𝑛 = 20000) for obtaining the source Dirac mixture, based on which the R&R
approach is performed using 𝑛 ∈ {20, 50, 200} components.
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ground truth 𝑛 = 20 𝑛 = 50 𝑛 = 200
𝜅* = 22.2,H = 0.02 𝜅* = 31.5,H = 0.016 𝜅* = 55.3,H = 0.007

(A) Continuous probabilistic modeling of a Bingham distribution on S2 in Example 15.1.

ground truth 𝑛 = 16 𝑛 = 42 𝑛 = 90
𝜆* = 26.7,H = 0.016 𝜆* = 42.3,H = 0.013 𝜆* = 54.8,H = 0.010

(B) Continuous probabilistic modeling of a synthesized distribution on S2 in Example 15.2.

Figure 6.9.: Hyperspherical reapproximation & reconstruction performed on the unit sphere S2. Red dots
depict the component locations of the resulting discrete and continuous models.

2. A spherical distribution is synthesized in the form of von Mises–Fisher mixture with density
𝑓VMFM(𝑥) = ∑︀7

𝑖=1 1/7 ·𝑓VMF(𝑥; 𝛼𝑖, 𝜅𝑖). We set the means of its components with (𝛼1, .., 𝛼7) =Å
[ 0, 0, 1 ]⊤,

[ 0, 2, 1 ]⊤√
5

,
[ 0,−2, 1 ]⊤√

5
,
[ 2, 0, 1 ]⊤√

5
,
[−2, 0, 1 ]⊤√

5
,

[ 0, 1, 2 ]⊤√
5

,
[ 0,−1, 2 ]⊤√

5

ã
and their concentrations with (𝜅1, ... , 𝜅7) = (5, 30, 30, 30, 30, 5, 5). We perform R&R to von
Mises–Fisher mixtures of 𝑛 ∈ {16, 42, 90} components based on a source Dirac mixture
provided by Û𝑛 = 20000 random samples drawn from the synthesized distribution.

The reapproximation & reconstruction results of the two scenarios above are illustrated in Fig. 6.9.
Based on discrete models given by the HDMR method (component locations depicted by red dots),
the followup reconstruction stage produces high-quality continuous models in the form of von Mises–
Fisher mixtures compared with the ground truth. As more target components are exploited by the
R&R procedure, the induced joint concentration parameter increases, and the modeling quality is
improved (i.e., smaller Hellinger distance).

6.6 MDF Revisited: The On-Manifold Reapproximation Discrete Filter

As previously discussed, the proposed MDMR paradigm produces efficient discrete models in the
form of Dirac mixtures. Besides the potential limitation of inefficiency in probabilistic modeling,
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Algorithm 11: On-Manifold Reapproximation Discrete Filter (MRDF)
Input: posterior state set Xe

𝑡 = {𝑥e
𝑡,𝑖}𝑛

𝑖=1, system noise set W = {𝑤𝑘}𝑛w
𝑘=1, measurement 𝑧𝑡+1

Output: posterior state set Xe
𝑡+1 = {𝑥e

𝑡+1,𝑖}𝑛
𝑖=1

1 X
p
𝑡+1 ← ∅, Ωp

𝑡+1 ← ∅ ;
/* prediction step */

2 for 𝑖← 1 to 𝑛 do
3 for 𝑘 ← 1 to 𝑛w do
4 𝑥p

𝑡+1,𝑟 ← 𝑎 (𝑥e
𝑡,𝑖, 𝑤𝑘) ; // see (5.3) and (5.4)

5 X
p
𝑡+1 ← {X

p
𝑡+1, 𝑥p

𝑡+1,𝑟 } ;
/* update step */

6 for 𝑟 ← 1 to 𝑛 · 𝑛w do
7 𝜈p

𝑡+1,𝑟 ← 𝑓L
𝑡+1(𝑧𝑡+1 |𝑥p

𝑡+1,𝑟) ;
8 Ωp

𝑡+1 ← {Ωp
𝑡+1, 𝜈p

𝑡+1,𝑟 } ;
9 Xe

𝑡+1 ← MDMR (Xp
𝑡+1, Ωp

𝑡+1, 𝑛) ; // domain-specific

10 return Xe
𝑡+1 ;

both grid-based and Monte Carlo-based nonparametric filtering schemes in Chapter 5 require the
form of the system noise distribution for system propagation. When only raw sample sets (of large
sizes) approximating the noise distribution are provided from empirical data, it is then inevitable
to conduct moment matching to parametric models, inducing the risk of large approximation error
in practice. In consideration of the aforementioned background, we introduce the on-manifold
reapproximation discrete filter (MRDF) built upon the MDMR paradigm for nonparametric
directional estimation in the absence of a system noise of given form. Following the generic
description of on-manifold discrete filtering in Sec. 5.2.1, the new MRDF has a concise design as
shown in Algorithm 11 [51,52].

Suppose that the noise distribution is time-invariant and has an unknown form, for which only a
large amount of empirical samples are provided. We first perform the MDMR in a variant that
properly respects the noise domain for reapproximation to a Dirac mixture of 𝑛w equally weighted
components. Since the MDMR scheme typically produces Dirac mixtures of uniform weights, we
discard the Dirac mixture expression with weighted components as originally formulated in the
generic design of MDF in Sec. 5.2.1. Instead, only locations of Dirac components are taken into
account, and the sample set Xe

𝑡 of size 𝑛 is used as the discrete representation of the posterior
estimate at time step 𝑡. During the prediction step, we combine the state and noise sample sets via
Cartesian product, and propagate them through the system model as derived in (5.3), inducing a
prior sample set Xp

𝑡+1 of cardinality 𝑛 · 𝑛w (Algorithm 11, lines 1–5). According to (5.5), we then
reweight each prior sample 𝑥p

𝑡+1,𝑟 using its likelihood 𝑓L
𝑡+1(𝑧𝑡+1 |𝑥p

𝑡+1,𝑟) given the measurement 𝑧𝑡+1
(Algorithm 11, lines 6–8). Afterward, the MDMR is performed to the reweighted prior samples
to produce a sample set Xe

𝑡+1 of size 𝑛 for discrete modeling of the posterior density at time step
𝑡 + 1 (Algorithm 11, line 9).

In the upcoming section, we apply the proposed MRDF scheme on the unit sphere S2 by specifying
the MDMR in line 9 of Algorithm 11 to be its hyperspherical variant given in Sec. 6.3. For evaluating
the resulting hyperspherical reapproximation discrete filter (HRDF), a case study on nonlinear
spherical estimation is provided as follows.
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ground truth 𝑛 = 500
𝜆 = 98.4,H = 5.12 × 10−3

Figure 6.10.: Hyperspherical reapproximation & reconstruction of the system noise distribution in Sec. 6.6.1.

6.6.1 Case Study: Nonlinear Spherical Estimation with Unknown System Noise

We specify the system model in the generic setting of (2.1) to be a spherical motion according to

𝑥𝑡+1 = 𝑥𝑡 + 𝑤𝑡

‖𝑥𝑡 + 𝑤𝑡 ‖
,

with 𝑥𝑡, 𝑥𝑡+1 ∈ S2 and 𝑤𝑡 ∈ S2 being the spherical states and the noise term, respectively. The
model essentially performs vector addition of the state and noise and then projects the sum to the
unit sphere. For underlining the strength of the proposed HRDF, we set the noise distribution
to be the one given in Example 15.2, which is visualized in Fig. 6.9-(B). The measurement model
takes the spherical coordinates of the state vector 𝑥𝑡 = [ 𝑥𝑡,1, 𝑥𝑡,2, 𝑥𝑡,3 ]⊤ and applies an additive
noise term, namely,

𝑧𝑡 =
[

arctan
Å

𝑥𝑡,2

𝑥𝑡,1

ã
, arctan

Å
𝑥𝑡,3

(𝑥2
𝑡,1 + 𝑥2

𝑡,2)1/2

ã]⊤

+ 𝑣𝑡 ,

with the measurement noise 𝑣𝑡 following a zero-mean Gaussian distribution N (02, 0.01 · I2×2).

Instead of providing the symbolic form of the synthesized noise distribution, we only provide a
discrete approximate of Û𝑛 = 20000 random samples drawn therefrom. Given the source, we then
perform the HDMR in Sec. 6.3 for obtaining Dirac mixtures of 𝑛w ∈ {30, 50, 100, 200, 300, 500, 1000}
equally weighted components as discrete noise models for the proposed HRDF. Moreover, the
HRDF only deploys a Dirac mixture of 𝑛 = 5 components for discrete modeling of the state
distribution. To compare it with state-of-the-art parametric hyperspherical filtering methods, we
exploit the same Û𝑛 = 20000 random samples for von Mises–Fisher modeling of the noise distribution
via moment matching. The fitted noise distribution is then deployed to deriving the transition
density for a random sampling-based von Mises–Fisher filter (vMFF) [110] with sample sizes
ranging from 100 to 5000. Additionally, we run a hyperspherical particle filter (HPF) as a baseline
with a typical sampling-importance resampling scheme exploiting the true noise distribution of
symbolic form to obtain the transition density (further used as the proposal). Sample sizes of the
HPF range from 50 to 5000. The estimation error is quantified by the arc length in radians (thus
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Figure 6.11.: Error over sample sizes given by the evaluated filters.

without unit) on the unit sphere according to arccos(𝑥⊤
𝑡 �̂�𝑡), with 𝑥𝑡 ∈ S2 and �̂�𝑡 ∈ S2 being the

ground truth and the estimate, respectively. Overall 5000 Monte Carlo runs are simulated with 30
consecutive time steps in each run. As in the case studies done previously in Sec. 4.4 and Sec. 5.3.4,
we exploit the RMSE of the last estimate in each run to express deviations.

As shown by the error over sample sizes plotted in Fig. 6.11, the proposed HRDF delivers superior
tracking accuracy over the other filters with only 5 samples exploited for discrete state modeling.
With 300 components deployed to noise Dirac mixture reapproximation, the HRDF induces an
error that is comparable to that of the HPF exploiting 5000 random samples and the true noise
distribution in symbolic form. This clearly underlines the superior representation efficiency of
the discrete models produced by the proposed HDMR method over the ones by the Monte Carlo
scheme. In Fig. 6.10, we further plot the von Mises–Fisher mixture modeling of the system noise
using 500 components given by the hyperspherical R&R scheme introduced in Sec. 6.5 (based on
the same source samples). The proposed scheme produces a high-quality continuous model of
the unknown noise distribution, inducing a very small difference compared with the ground truth
(indicated by a very small Hellinger distance). Furthermore, the vMFF still exhibits a clear offset
to the baseline even until convergence using a large number of samples. This coheres with our
understanding about the limitation of imposing parametric settings to approximating complex
noise or state distributions.

As further shown in Fig. 6.12, the proposed HRDF has a little worse runtime performance compared
with the random sampling-based ones given the same small sample sizes. This results from runtime
overhead, caused by, e.g., memory allocation for preparing the reapproximation, and is no longer
observed when the sample size increases. More importantly, the HRDF delivers much better
tracking accuracy than the others given same runtime as illustrated in Fig. 6.13. In this case,
margins of superiority are quickly built up by the proposed HRDF over runtime. In fact, since
the system noise is represented by a discrete model of deterministic components, no sampling or
resampling is required by the HRDF as in the other Monte Carlo-based filtering approaches. The
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Figure 6.12.: Runtime over sample sizes given by the evaluated filters.

Figure 6.13.: Error over runtime given by the evaluated filters.
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6.7. Short Summary

most computationally intensive part for the HRDF is the reapproximation for the update step
as shown in line 9 of Algorithm 11. Thanks to the Riemannian trust-region method using the
symbolic gradients and Hessians of the proposed HCvMD, the reapproximation step exhibits good
runtime efficiency.

6.7 Short Summary

In this chapter, we build up a novel and unified paradigm for efficient discrete modeling on
typical directional manifolds. Given a source Dirac mixture of equally or unequally weighted
components, the proposed on-manifold reapproximation scheme produces target Dirac mixtures
of configurable numbers of components with layouts adaptive to the shape of the underlying
unknown dispersion in the sense of least MCvMD. Customization to a specific manifold only
requires a topology-aware kernel and a weighting function that leads to a closed-form MCvMD unit.
For that, we showcase several MDMR-variants for the unit circle, unit hyperspheres of arbitrary
dimensions, the manifold of planar dual quaternions, and the manifold of unit dual quaternions. As
a followup of the MDMR-based discrete modeling, we further show the two-stage reapproximation
& reconstruction procedure on unit hyperspheres to obtain continuous probabilistic models in the
form of von Mises–Fisher mixtures. By producing efficient discrete models, the MDMR scheme
further contributes to establishing the on-manifold reapproximation discrete filter (nonparametric),
which achieves evident superiority over parametric and Monte Carlo-based filters for nonlinear
directional estimation with unknown form of system noise.
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CHAPTER
7

Conclusions

In this thesis, we have established a methodological framework for systematically investigating
recursive Bayesian estimation techniques for directional domains under the spirit of on-manifold
handling of on-manifold uncertainties. From a geometric perspective, directional random variables
are handled in a topology-aware fashion. This leads to theoretically sound interpretations of proba-
bilistic modeling and filtering in comparison with the conventional linearization-based methodology
built upon the assumption of local perturbation. As motivated in Chapter 1, recursive Bayesian
estimation for directional domains is relevant in ubiquitous application scenarios with various and
often complex problem settings. Having emerged in the past few years, however, on-manifold
directional estimation techniques still stay at the stage of exploiting basic parametric directional
statistical models (e.g., the von Mises, the wrapped normal, the von Mises–Fisher, or the Bingham
distributions) and fundamental tools of classical recursive Bayesian estimation (e.g., the unscented
transform). While these approaches provide a solid theoretical basis for on-manifold parametric
filtering, there exists the urge to upgrade the rudimentary theoretical architecture in the face of
requirements from challenging engineering practices.

In consideration of the existing limitations and theoretical demand in real-world applications, we
first extend the classical definition of directional domains – the scope of our theoretical architecture
is adjusted to topological spaces incorporating both directional manifolds S𝑑−1 ⊂ R𝑑 (𝑑 ≥ 2) and
Euclidean spaces (typically coupled via Cartesian product) – leading to the concept of composite
directional domains. This makes on-manifold directional modeling and filtering theories applicable
to a series of important applications, in particular for uncertainty quantification and estimation of
rigid body motions (e.g., based on the SE(3) or SE(2) representations of unit dual quaternions).
Under the broadened scope of directional domains, we have achieved considerable advances in
algorithmic innovations of topology-aware probabilistic modeling and filtering, systematically
drafting out a methodological framework for on-manifold recursive Bayesian estimation. More
specifically, the key contributions of this thesis are summarized as follows.

7.1 Contributions

We summarize the novel insights and methodologies presented in Chapter 3 to Chapter 6 into the
following three categories. Essential geometric tools for investigating directional manifolds are first
systematically introduced. Based thereon, we construct our on-manifold methodological framework
with upgraded parametric and new nonparametric methods for probabilistic modeling and filtering
of uncertain directional variables.

Geometric investigation on directional domains: As the basis of the bottom-up construction
of the framework, we first provide a systematic investigation in Chapter 3 on related directional
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domains including the unit hyperspheres and those with additional topological structures (such
as antipodal symmetry or products with Euclidean spaces) represented by the manifolds of unit
quaternions and unit dual quaternions. As a fundamental topological component of directional
manifolds, the unit hypersphere is first studied. There, we present several important geometric
tools, such as the logarithm/exponential maps, orthographic and gnomonic projection/retraction,
to mathematically bridge the hyperspherical manifold to a certain tangent space located on it.
The logarithm/exponential maps are geodesic-preserving and are further exploited by the isotropic
deterministic sampling (IDS) for von Mises–Fisher distributions (Sec. 4.2.2) and the mode-centric
partitioning (MCP) for grid-based discrete modeling of hyperspherical densities (Sec. 5.1.1). We
also point out that the logarithm/exponential maps and orthographic projection/retraction have
issues of warping and truncation effects, respectively. Therefore, they are not recommended for
deployment to in-tangent-space interpretation of on-manifold uncertainties. Instead, the gnomonic
projection/retraction technique guarantees unbounded probabilistic modeling in hyperspherical
tangent spaces and can also handle dispersion of antipodal symmetry for certain topological
spaces (e.g., the unit quaternion manifold). Therefore, this technique is exploited by the flexible
deterministic sampling (FDS) for Bingham distributions in Sec. 4.2.1 and further as the geometric
basis of establishing the on-manifold unscented particle filtering scheme in Sec. 5.3.

Moreover, we also bring novel insights to the geometric structure of unit quaternion and unit
dual quaternion manifolds in the context of probabilistic modeling and filtering. One of the
important findings is the SO(4) interpretation of the quaternion Hamilton product that closes the
unit hypersphere S3 (Sec. 3.2). This further facilitates the grid transportation in the MCP-based
discrete quaternion filter in Sec. 5.2.2. Probabilistic modeling in hyperspherical tangent spaces
needs to be done w.r.t. local bases. For that, two choices are recommended in Sec. 3.3.2, namely,
the Bingham principal basis (BPB) and the quaternion concomitant basis (QCB). The former
incorporates the underlying probabilistic information geometrically into spanning the tangent
space – this is exploited by the FDS on Bingham distributions in Sec. 4.2.1 and enables modeling
the correlation between hyperspherical and Euclidean components in the parallel transport-based
Bingham–Gaussian (PTBG) modeling scheme for composite directional domains in Sec. 4.1. The
latter contributes to establishing the (augmented) tangent space for the on-manifold unscented
particle filter in Sec. 5.3 customized to the manifolds of unit quaternions and unit dual quaternions.

Upgraded parametric probabilistic modeling and filtering on directional manifolds: As for
parametric modeling on composite directional manifolds, we showcase a novel approach on the
unit dual quaternion manifold, which couples the unit hypersphere S3 and the Euclidean space
R3 via Cartesian product in an orthogonal fashion. With each individual component modeled
by a Bingham distribution and a Gaussian distribution, respectively, the method models their
correlation w.r.t. the BPB (given in Sec. 3.3.2) under the Hamilton product-based parallel transport
(provided in Sec. 3.2.2). Based thereon, we provide several fundamental building blocks for dual
quaternion filtering, such as the deterministic sampling method and the update step for identity
measurement models in Sec. 4.1, with validations based on simulations.

In the past state of the art of parametric directional filtering, deterministic samples of fixed sample
sizes are drawn to preserve moments of the underlying distribution only up to the second order.
This basic unscented transform (UT)-based scheme often leads to deteriorated tracking performance
of parametric directional filtering under strong nonlinearities due to sample degeneracy issues.
Therefore, we enhance it by enabling configurable sizes of deterministic samples that approximate
higher-order shape information of the underlying dispersion under the constraint of UT. Based
on the geometric investigation on directional manifolds in Chapter 3, we introduce the concept
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of configurable deterministic sampling (CDS) in Sec. 4.2 and practice it on the Bingham and
von Mises–Fisher distributions, yielding the variants flexible deterministic sampling and isotropic
deterministic sampling, respectively. For further improving the sample efficiency in the face of strong
nonlinearities and non-identity measurement models, we propose the deterministic progressive
update scheme in Sec. 4.3, where a measurement is fused stepwise with stride lengths adapted to
the difference of the likelihoods among the deterministic samples. By combining the CDS with the
progressive update scheme, performance of parametric filters has gained considerable enhancement
for nonlinear directional estimation as shown in Sec. 4.4.

Systematic establishment of nonparametric directional modeling and filtering: We exploit
on-manifold Dirac mixtures for nonparametric probabilistic modeling and filtering of directional
random variables. Given the bounded and compact topology of unit hyperspheres, we first introduce
two grid generation approaches in Sec. 5.1, the hyperspherical equal partitioning (HEP) and mode-
centric partitioning (MCP) methods, for grid-based hyperspherical discrete modeling. The former
enables quasi-equidistant grid points, allowing for precomputed grid reweighting scheme given the
form of a transition density. The latter models the uncertainty in the vicinity of the mode with
higher resolution and exhibits better representation efficiency especially when symmetry exists
in the underlying topology. For nonparametric directional estimation using Dirac mixtures of
deterministic supports, a generic design of the on-manifold discrete filter (MDF) is proposed in
Sec. 5.2, with customization to the MCP-based grid showcased for quaternion estimation.

We further practicalize the Monte Carlo-based nonparametric filtering scheme for directional
domains. On-manifold directional estimation often requires handling strong nonlinearities in
high-dimensional spaces, with peaky likelihoods, heavy-tailed distributions, or non-stationary
systems appearing in a joint manner. Each of these may lead to deteriorated performance of a
plain particle filter due to particle degeneracy caused by exploiting the transition prior as the
proposal. For mitigating this issue, we follow the basic design of the unscented particle filter (UPF)
originally proposed for Euclidean spaces and introduce the on-manifold unscented particle filter
(MUPF) for directional domains in Sec. 5.3. Based on the geometric investigation on directional
manifolds in Chapter 3, the on-manifold UKF (MUKF) is proposed by introducing the (augmented)
tangent space established on each particle via the (augmented) gnomonic projection/retraction.
By fusing the recent evidence into the proposal particlewise using the MUKF, the MUPF shows
evident performance superiority over the plain particle filter and parametric filters for directional
estimation under critical conditions.

Last but not least, we introduce the concept of reapproximation-based Dirac mixture modeling
in Sec. 6.1 and propose the on-manifold Dirac mixture reapproximation (MDMR) paradigm in
Sec. 6.2 for efficient discrete representation of arbitrary directional uncertainties. Dirac mixtures of
deterministic and dispersion-adaptive layouts are often preferable for probabilistic modeling over
the ones based on grids (of fixed layout) or Monte Carlo schemes (with randomness in particles).
Given a source Dirac mixture of many supports provided by empirical data, the MDMR paradigm
can be flexibly customized w.r.t. the specific manifold and produces a target Dirac mixture of fewer
(also configurable) and more representative components. We then customize the MDMR paradigm
to unit hyperspheres in Sec. 6.3 and provide further variants on unit circles and dual quaternion
manifolds in Sec. 6.4. Based on the customization to S𝑑−1 (𝑑 ≥ 3), a followup reapproximation
& reconstruction procedure is introduced for continuous modeling of unknown hyperspherical
distributions in the form of von Mises–Fisher mixtures. Moreover, we integrate the MDMR
paradigm into the MDF to establish the on-manifold reapproximation discrete filter (MRDF) in
Sec. 6.6 for nonparametric directional filtering with unknown form of system noise distribution.
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Evaluations for nonlinear spherical tracking validate the superior performance of the proposed
MRDF over parametric and Monte Carlo-based filters.

7.2 Outlook

The work presented in this thesis can be exploited as a basis to flesh out an even more complete
theoretical framework for on-manifold directional modeling and filtering. Some results in the
presented geometric investigation can be used to establish new probabilistic models. For instance,
a new parametric modeling approach for uncertain unit dual quaternions can also be proposed
based on the augmented gnomonic projection/retraction given in Sec. 5.3. As also shown in [41,48],
a hybrid scheme can be established for probabilistic modeling on composite directional manifolds –
a nonparametric model based on Dirac mixtures (of either random or deterministic supports) can
be deployed to the hypersphere, with a parametric model (e.g., a Gaussian distribution) modeling
the linear part conditioned on each hyperspherical Dirac component via Rao–Blackwellization.
Moreover, combining some of the presented techniques in this thesis may also lead to interesting
research results. For example, the proposed MCvMD scheme makes it possible to obtain a
hyperspherical grid of adaptive layout. This may further contribute to proposing a new grid-based
hyperspherical filter (using either Dirac mixtures or piecewise constant densities) that could achieve
better performance than existing grid-based filtering methods.

For paving the way towards broader applicability, some of the proposed approaches may need more
extensive evaluations. For instance, the parametric modeling method introduced for composite
directional manifolds in Sec. 4.1 is to be tested in common scenarios of SE(3) estimation using the
proposed deterministic sampling scheme and measurement update step. Extensions to non-identity
measurement models can also be made using the progressive update scheme introduced in Sec. 4.3.
Furthermore, the proposed MDMR paradigm should be tested for higher-dimensional directional
domains for more extensive use. Some building blocks of its hyperspherical variant, such as the
scenario-dependent parameter 𝜖 in (6.17) and weighting function in (6.11), may need adjustments.

So far, the proposed filtering framework only considers basic directional random variables, thereby
disregarding complex dynamics involving first- and second-order derivatives of on-manifold states.
When it comes to certain real-world applications, e.g., quaternion or dual quaternion-based
egomotion estimation, adaptations to the current filtering methods are essential. For instance,
under the proposed MUPF scheme, the augmented tangent space can be further extended to
incorporate linear/angular velocities and other essential motion variables for establishing a tightly-
coupled state estimation scheme. In this regard, customized kinematic and dynamic models are
important for successful deployment of the presented methods. For some typical applications,
benchmarking of the proposed filters may also be appealing.

The thesis focuses on the methodological design of on-manifold uncertainty quantification and
estimation. While its typical application scenarios lie in the field of data fusion [25, 52], with
proper adaptations and extensions, the presented methodologies may also benefit broader research
areas such as pattern recognition and machine learning. For instance, the presented MDMR
method can be exploited for solving tasks such as on-manifold data pruning and clustering, scene
segmentation, or data-driven modeling of complex system dynamics [7, 19, 111]. In these cases,
the generic paradigm may require customization to other types of directional domains, and key
components such as the kernel and weighting functions are to be designed accordingly.
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APPENDIX
A

Derivations for Quaternions and Dual Quaternions

A.1 Definition of Unit Dual Quaternion Manifold

For the derivation below, we slightly abuse the vector notation of quaternions through a mixture
with the dual unit 𝜖 and denote a dual quaternion as 𝑥 = 𝑥r + 𝜖 𝑥s. Further, we rewrite its real
and dual parts into

𝑥r = [ 𝑥r,0, �̌�⊤
r ]⊤ and 𝑥s = [ 𝑥s,0, �̌�⊤

s ]⊤ ,

respectively, with �̌�r = [ 𝑥r,1, 𝑥r,2, 𝑥r,3 ]⊤ and �̌�s = [ 𝑥s,1, 𝑥s,2, 𝑥s,3 ]⊤. By applying the definition of
the dual quaternion norm and considering 𝜖2 = 0 [30], we have

𝑥⊠𝑥* = (𝑥r + 𝜖 𝑥s)⊠ (𝑥*
r + 𝜖 𝑥*

s ) = 𝑥r⊗𝑥*
r + 𝜖 (𝑥r⊗𝑥*

s +𝑥s⊗𝑥*
r ) = 𝑥r⊗𝑥*

r + 𝜖 (𝑥r⊗𝑥*
s +(𝑥r⊗𝑥*

s )*) .

According to the definition of the Hamilton product [99], we further obtain

𝑥r ⊗ 𝑥*
s = [ 𝑥r,0, �̌�⊤

r ]⊤ ⊗ [ 𝑥s,0,−�̌�⊤
s ]⊤

= [ 𝑥r,0 𝑥s,0 + �̌�⊤
r �̌�s , (𝑥s,0 �̌�r − 𝑥r,0 �̌�s − �̌�r × �̌�s)⊤]⊤ .

The dual part of the product then boils down to 𝑥r ⊗ 𝑥*
s + 𝑥s ⊗ 𝑥*

r = 2(𝑥s,0 𝑥r,0 + �̌�⊤
r �̌�s) = 2 𝑥⊤

r 𝑥s.
Thus, we have 𝑥⊠𝑥* = 𝑥r⊗𝑥*

r +2 𝜖 𝑥⊤
r 𝑥s. By imposing the constraint of unit norm, i.e., 𝑥⊠𝑥* = 1,

the real part in the product needs to be one and the dual part zero. Thus, unit dual quaternions
are confined to the manifold DH1 = {[ 𝑥⊤

r , 𝑥⊤
s ]⊤|𝑥r ∈ S3, 𝑥⊤

r 𝑥s = 0} ⊂ R8.

A.2 Unit Dual Quaternions Representing SE(3) States

Considering the derivation in Appendix A.1 and the definition of 𝑥s in (3.12), the squared norm of
any dual quaternion 𝑥 = [ 𝑥⊤

r , 𝑥⊤
s ]⊤ representing the SE(3) state follows

𝑥 ⊠ 𝑥* = 𝑥r ⊗ 𝑥*
r + 𝜖 𝑥r ⊗ ([ 0, 0.5 𝑡⊤ ]⊤ ⊗ 𝑥r)* + 𝜖 [ 0, 0.5 𝑡⊤ ]⊤ ⊗ 𝑥r ⊗ 𝑥*

r

= 1 + 𝜖 [ 0,−0.5 𝑡⊤ ]⊤ + 𝜖 [ 0, 0.5 𝑡⊤ ]⊤ = 1 .

Thus, dual quaternions representing SE(3) states are of unit norm.

A.3 Augmented Gnomonic Projection on Unit Dual Quaternion Manifold

Given the LATS at 𝑣 = [ 𝑣⊤
r , 𝑣⊤

s ]⊤ ∈ DH1, performing the augmented gnomonic projection to
the dual part of 𝑥 = [ 𝑥⊤

r , 𝑥⊤
s ]⊤ ∈ DH1 essentially induces a subtracted translation term. The
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subtraction follows

Δ = [ Δ⊤
r , Δ⊤

s ]⊤ := 𝑣−1 ⊠ 𝑥 =
ï

𝑣−1
r ⊗ 𝑥r

𝑣−1
r ⊗ 𝑥s + 𝑣*

s ⊗ 𝑥r

ò
.

Given the definition of unit dual quaternions representing SE(3) states in (3.12), the subtracted
translation term can be derived according to[

0, 𝑡⊤
Δ
]⊤ = 2 (𝑣−1

r ⊗ 𝑥s + 𝑣*
s ⊗ 𝑥r)⊗ (𝑣−1

r ⊗ 𝑥r)−1

= 2 (𝑣−1
r ⊗ 𝑥s + 𝑣*

s ⊗ 𝑥r)⊗ 𝑥−1
r ⊗ 𝑣r

= 2 𝑣−1
r ⊗ 𝑥s ⊗ 𝑥−1

r ⊗ 𝑣r + 2 𝑣*
s ⊗ 𝑣r

= 𝑣−1
r ⊗ [ 0, 𝑡⊤

x ]⊤ ⊗ 𝑣r + 𝑣*
r ⊗ [ 0,−𝑡⊤

v ]⊤ ⊗ 𝑣r

= 𝑣−1
r ⊗ [ 0, 𝑡⊤

x − 𝑡⊤
v ]⊤ ⊗ 𝑣r .

Here, 𝑡v and 𝑡x denote the translation vectors encoded in the corresponding dual parts 𝑣s and 𝑥s,
respectively. Considering the rotation law of unit quaternions given in (3.7), we then obtain

𝑡Δ = R−1
vr (𝑡x − 𝑡v) = R⊤

vr(𝑡x − 𝑡v) .
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B

Orbit Interval for Isotropic Deterministic Sampling

Obtaining the orbit interval 𝜆 for isotropic deterministic sampling on von Mises–Fisher distributions
refers to solving (4.5), which can be done using a generic numerical solver (e.g., solve in Matlab).
To achieve better runtime efficiency, however, we tailor Newton’s Method with iterations performed
in closed form. For that, we derive the first derivative of the Dirichlet kernel J𝑛1(𝜆) w.r.t. 𝜆 as

dJ𝑛1(𝜆)
d𝜆

=
(𝑛1 + 0.5) cos

(
(𝑛1 + 0.5)𝜆

)
sin(0.5 𝜆)− 0.5 sin

(
(𝑛1 + 0.5)𝜆

)
cos(0.5 𝜆)

2
(

sin(0.5 𝜆)
)2

= 0.5 (𝑛1 + 0.5) cos
(
(𝑛1 + 0.5)𝜆

)
csc(0.5 𝜆)− 0.5J𝑛1(𝜆) cot(0.5 𝜆) ,

with J𝑛1(𝜆) = 0.5 sin((𝑛1 + 0.5)𝜆)/ sin(0.5 𝜆). In the context of this appendix, we use 𝑖 as the
index of the Newton step. Then, 𝜆 can be updated from the 𝑖-th to the (𝑖 + 1)-th step according to

𝜆𝑖+1 = 𝜆𝑖 −
J𝑛1(𝜆𝑖)−

(
(𝑛1𝑛2 + 1)A𝑑(𝜅)− 1

)
/𝑛2 − 0.5

0.5 (𝑛1 + 0.5) cos
(
(𝑛1 + 0.5)𝜆𝑖

)
csc(0.5 𝜆𝑖)− 0.5J𝑛1(𝜆𝑖) cot(0.5 𝜆𝑖)

.

We initialize the Newton’s method via linear interpolation between 0 and the first non-negative
zero of J𝑛1(𝜆), i.e., 𝜋/(𝑛1 + 0.5), w.r.t. their corresponding Dirichlet kernel values 𝑛1 + 0.5 and 0.
By substituting the right-hand side of (4.5) with 𝑐 = (𝑛1𝑛2 + 1)A𝑑(𝜅)/𝑛2 − 1/𝑛2 + 0.5, we obtain
the initial value

𝜆0 = 𝜋 (𝑛1 + 0.5− 𝑐)
(𝑛1 + 0.5)2 = 𝜋(𝑛1 + 1/𝑛2)(1−A𝑑(𝜅))

(𝑛1 + 0.5)2 .

The customized Newton’s method above with closed-form derivative delivers fast convergence in
practice (within five steps given a typical stopping criterion). This is considerably faster than a
universal numerical solver (e.g., two orders of magnitude faster than solve in Matlab) and delivers
a good runtime performance in nonlinear von Mises–Fisher filtering as shown in [38].
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C

Derivations for On-Manifold Dirac Mixture
Reapproximations

C.1 Pointwise Derivatives of MCvMD in the Ambient Space

For the sake of conciseness, we first derive the pointwise derivatives in generic expressions in
Appendix C.1.1. Afterward, customization to specific manifolds is provided in Appendix C.1.2 to
Appendix C.1.4.

C.1.1 Generic Expressions

We express the MCvMD unit in (6.8) as Q(𝑢, 𝑣) = Q(𝛿(𝑢, 𝑣)), with 𝛿(𝑢, 𝑣) denoting the distance
metric in accordance with the underlying manifold geometry. The gradient of the MCvMD unit
w.r.t. the point location 𝑢 then follows

𝜕Q(𝑢, 𝑣)
𝜕𝑢

= dQ(𝛿)
d𝛿

𝜕𝛿(𝑢, 𝑣)
𝜕𝑢

=: 𝜒(𝑢, 𝑣)𝜕𝛿(𝑢, 𝑣)
𝜕𝑢

, (C.1)

with the scalar coefficient 𝜒(𝑢, 𝑣) = dQ(𝛿)/ d𝛿 being its first derivative w.r.t. to the distance metric.
The pointwise gradient of the MCvMD in (6.10) w.r.t. 𝑥𝑖 is then expressed as

𝜕D(X,ÙX)
𝜕𝑥𝑖

= 𝜕D1(X)
𝜕𝑥𝑖

− 2𝜕D2(X,ÙX)
𝜕𝑥𝑖

,

with derivative of the last component D3 in (6.10) being zero (since its value is constant given the
source Dirac mixture) and derivatives of the other two components being

𝜕D1(X)
𝜕𝑥𝑖

= 2 𝜈𝑖

𝑛∑︁
𝑗=1

𝜈𝑗

𝜕Q(𝑥𝑖, 𝑥𝑗)
𝜕𝑥𝑖

= 2 𝜈𝑖

𝑛∑︁
𝑗=1

𝜈𝑗 𝜒(𝑥𝑖, 𝑥𝑗)
𝜕𝛿(𝑥𝑖, 𝑥𝑗)

𝜕𝑥𝑖

and

𝜕D2(X,ÙX)
𝜕𝑥𝑖

= 𝜈𝑖

Û𝑛∑︁
𝑘=1
Û𝜈𝑘

𝜕Q(𝑥𝑖, Û𝑥𝑘)
𝜕𝑥𝑖

= 𝜈𝑖

Û𝑛∑︁
𝑘=1
Û𝜈𝑘 𝜒(𝑥𝑖, Û𝑥𝑘)𝜕𝛿(𝑥𝑖, Û𝑥𝑘)

𝜕𝑥𝑖

,

(C.2)

respectively. Further, based on the expression in (C.1), we obtain the Hessians of the MCvMD
unit w.r.t. the sample locations in the form

𝜕2Q(𝑢, 𝑣)
𝜕𝑢 𝜕𝑢⊤ = 𝜕𝜒(𝑢, 𝑣)

𝜕𝑢

(𝜕𝛿(𝑢, 𝑣)
𝜕𝑢

)⊤
+ 𝜒(𝑢, 𝑣)𝜕2𝛿(𝑢, 𝑣)

𝜕𝑢 𝜕𝑢⊤ ,

𝜕2Q(𝑢, 𝑣)
𝜕𝑢 𝜕𝑣⊤ = 𝜕𝜒(𝑢, 𝑣)

𝜕𝑣

(𝜕𝛿(𝑢, 𝑣)
𝜕𝑢

)⊤
+ 𝜒(𝑢, 𝑣)𝜕2𝛿(𝑢, 𝑣)

𝜕𝑢 𝜕𝑣⊤ .

(C.3)
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Consequently, the pointwise Hessians of the MCvMD components in (6.10) w.r.t. target Dirac
locations can be expressed componentwise according to

𝜕2D1(X)
𝜕𝑥𝑖𝜕𝑥⊤

𝑖

= 2 𝜈𝑖

𝑛∑︁
𝑗=1

𝜈𝑗

𝜕2Q(𝑥𝑖, 𝑥𝑗)
𝜕𝑥𝑖𝜕𝑥⊤

𝑖

= 2 𝜈𝑖

𝑛∑︁
𝑗=1

𝜈𝑗

(
𝜕𝜒(𝑥𝑖, 𝑥𝑗)

𝜕𝑥𝑖

(𝜕𝛿(𝑥𝑖, 𝑥𝑗)
𝜕𝑥𝑖

)⊤
+ 𝜒(𝑥𝑖, 𝑥𝑗)

𝜕2𝛿(𝑥𝑖, 𝑥𝑗)
𝜕𝑥𝑖 𝜕𝑥⊤

𝑖

)
,

𝜕2D1(X)
𝜕𝑥𝑖𝜕𝑥⊤

𝑗

= 2𝜈𝑖

𝑛∑︁
𝑗=1

𝜈𝑗

𝜕2Q(𝑥𝑖, 𝑥𝑗)
𝜕𝑥𝑖𝜕𝑥⊤

𝑗

= 2 𝜈𝑖

𝑛∑︁
𝑗=1

𝜈𝑗

(
𝜕𝜒(𝑥𝑖, 𝑥𝑗)

𝜕𝑥𝑗

(𝜕𝛿(𝑥𝑖, 𝑥𝑗)
𝜕𝑥𝑖

)⊤
+ 𝜒(𝑥𝑖, 𝑥𝑗)

𝜕2𝛿(𝑥𝑖, 𝑥𝑗)
𝜕𝑥𝑖 𝜕𝑥⊤

𝑗

)
,

𝜕2D2(X,ÙX)
𝜕𝑥𝑖𝜕𝑥⊤

𝑖

= 𝜈𝑖

Û𝑛∑︁
𝑘=1
Û𝜈𝑘

𝜕2Q(𝑥𝑖, Û𝑥𝑘)
𝜕𝑥𝑖𝜕𝑥⊤

𝑖

= 𝜈𝑖

Û𝑛∑︁
𝑘=1
Û𝜈𝑘

(
𝜕𝜒(𝑥𝑖, Û𝑥𝑘)

𝜕𝑥𝑖

(𝜕𝛿(𝑥𝑖, Û𝑥𝑘)
𝜕𝑥𝑖

)⊤
+ 𝜒(𝑥𝑖, Û𝑥𝑘)𝜕2𝛿(𝑥𝑖, Û𝑥𝑘)

𝜕𝑥𝑖 𝜕𝑥⊤
𝑖

)
.

(C.4)

Given a specific distance metric 𝛿(𝑢, 𝑣), the expressions above are applicable to non-composite
directional domains including the unit circle, unit hyperspheres, or Euclidean spaces.

For composite directional domains1, deriving the gradients can still follows the same procedure
for each component domain provided that the kernel function k(𝑢, 𝑣) is separable. Regarding
Hessians, besides the derivations for each individual component domain, there also requires the
partial derivatives of the gradient w.r.t. variables across the component domains, which we do
not elaborate in this thesis to avoid redundant derivations. However, they are incorporated in
symbolic form into the implementation of all MDMR-variants introduced in Sec. 6.3 and Sec. 6.4 to
guarantee efficient convergence for reapproximation.

C.1.2 Specification on Unit Hyperspheres

For the sake of clarity, we derive the gradients and Hessians w.r.t. each target set location (namely,
each column in X ∈ OB(𝑑, 𝑛)) in the ambient space of S𝑑−1 ⊂ R𝑑. In practice, however, their
computation is implemented fully matrix-wise for runtime efficiency of the optimization.

Pointwise gradients in the ambient space of S𝑑−1: We first rewrite the HCvMD unit in (6.14)
into the form

Q(𝑢, 𝑣) = (2𝜋)𝑑/2

𝑑/2− 1

Å»
𝜖2 − 2(1 + 𝑢⊤𝑣

)
+ 𝜖

ã1−𝑑/2

=: (2𝜋)𝑑/2

𝑑/2− 1
(
𝜁(𝑢, 𝑣) + 𝜖

)1−𝑑/2
,

with 𝜁(𝑢, 𝑣) =
√

𝜖2 − 2(1 + 𝛿(𝑢, 𝑣)) substituting the square root term, where the inner product
𝛿(𝑢, 𝑣) = 𝑢⊤𝑣 denotes the distance metric on S𝑑−1 in accordance with the hyperspherical geometry.

1 E.g., the planar dual quaternion manifold or the general unit dual quaternion manifold, where the variable 𝑥 = [ 𝑥⊤
r , 𝑥⊤

s ]⊤ ∈
S1 × R2 or DH1, respectively.
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Further, the first-order derivative of Q(𝑢, 𝑣) w.r.t. the point location 𝑢 is obtained according to
(C.1) in the form

𝜕Q(𝑢, 𝑣)
𝜕𝑢

= (2𝜋)𝑑/2

𝜁(𝑢, 𝑣)
(
𝜁(𝑢, 𝑣) + 𝜖

)𝑑/2
𝜕𝛿(𝑢, 𝑣)

𝜕𝑢
=: 𝜒(𝑢, 𝑣) 𝑣 , (C.5)

with the substitute of the coefficient given by

𝜒(𝑢, 𝑣) = (2𝜋)𝑑/2

𝜁(𝑢, 𝑣) (𝜁(𝑢, 𝑣) + 𝜖)𝑑/2 . (C.6)

Based thereon, the pointwise gradients of the HCvMD components in (6.15) can be specified
according to (C.2) as

𝜕D1(X)
𝜕𝑥𝑖

= 2 𝜔𝑖

𝑛∑︁
𝑗=1

𝜔𝑗 𝜒(𝑥𝑖, 𝑥𝑗) 𝑥𝑗 and 𝜕D2(X,ÙX)
𝜕𝑥𝑖

= 𝜔𝑖

Û𝑛∑︁
𝑘=1
Û𝜈𝑘 𝜒(𝑥𝑖, Û𝑥𝑘) Û𝑥𝑘 ,

with 𝜒(𝑥𝑖, 𝑥𝑗) and 𝜒(𝑥𝑖, Û𝑥𝑘) expressed according to (C.6), respectively.

Pointwise Hessians in the ambient space of S𝑑−1: For deriving Hessians of the HCvMD unit in
(6.14), we first provide the derivative of the coefficient in (C.6) w.r.t. point locations 𝑢 and 𝑣 in
the form

𝜕𝜒(𝑢, 𝑣)
𝜕𝑢

=
(2𝜋)𝑑/2((2 + 𝑑) 𝜁(𝑢, 𝑣) + 2𝜖

)
2 𝜁3(𝑢, 𝑣)(𝜁(𝑢, 𝑣) + 𝜖)1+𝑑/2 𝑣 = (2 + 𝑑)𝜁(𝑢, 𝑣) + 2𝜖

2(𝜁(𝑢, 𝑣) + 𝜖) 𝜁2(𝑢, 𝑣)𝜒(𝑢, 𝑣) 𝑣 ,

𝜕𝜒(𝑢, 𝑣)
𝜕𝑣

=
(2𝜋)𝑑/2((2 + 𝑑) 𝜁(𝑢, 𝑣) + 2𝜖

)
2 𝜁3(𝑢, 𝑣)(𝜁(𝑢, 𝑣) + 𝜖)1+𝑑/2 𝑢 = (2 + 𝑑)𝜁(𝑢, 𝑣) + 2𝜖

2(𝜁(𝑢, 𝑣) + 𝜖) 𝜁2(𝑢, 𝑣)𝜒(𝑢, 𝑣) 𝑢 ,

respectively. Given that 𝛿(𝑢, 𝑣) = 𝑢⊤𝑣, we have the second derivative of 𝛿(𝑢, 𝑣) w.r.t. the point
location 𝑢 holding

𝜕2𝛿(𝑢, 𝑣)
𝜕𝑢 𝜕𝑢⊤ = 0𝑑×𝑑 .

Following the generic expression in (C.3), we then obtain

𝜕2Q(𝑢, 𝑣)
𝜕𝑢 𝜕𝑢⊤ = 𝜕𝜒(𝑢, 𝑣)

𝜕𝑢
𝑣⊤ = (2 + 𝑑) 𝜁(𝑢, 𝑣) + 2𝜖

2 (𝜁(𝑢, 𝑣) + 𝜖) 𝜁2(𝑢, 𝑣)𝜒(𝑢, 𝑣) 𝑣 𝑣⊤ ,

𝜕2Q(𝑢, 𝑣)
𝜕𝑢 𝜕𝑣⊤ = 𝜕𝜒(𝑢, 𝑣)

𝜕𝑣
𝑣⊤ + 𝜒(𝑢, 𝑣) I𝑑×𝑑 = 𝜒(𝑢, 𝑣)

Å (2 + 𝑑) 𝜁(𝑢, 𝑣) + 2𝜖

2 (𝜁(𝑢, 𝑣) + 𝜖) 𝜁2(𝑢, 𝑣) 𝑢 𝑣⊤ + I𝑑×𝑑

ã
.

The pointwise Hessians of the HCvMD components in (6.15) are then derived according to (C.4) as

𝜕2D1(X)
𝜕𝑥𝑖𝜕𝑥⊤

𝑖

= 2 𝜈𝑖

𝑛∑︁
𝑗=1

𝜈𝑗

𝜕2Q(𝑥𝑖, 𝑥𝑗)
𝜕𝑥𝑖𝜕𝑥⊤

𝑖

= 2 𝜈𝑖

𝑛∑︁
𝑗=1

𝜈𝑗

(2 + 𝑑) 𝜁(𝑥𝑖, 𝑥𝑗) + 2𝜖

(𝜁(𝑥𝑖, 𝑥𝑗) + 𝜖) 𝜁2(𝑥𝑖, 𝑥𝑗)
𝜒(𝑥𝑖, 𝑥𝑗) 𝑥𝑗 𝑥⊤

𝑗 ,

𝜕2D1(X)
𝜕𝑥𝑖𝜕𝑥⊤

𝑗

= 2 𝜈𝑖

𝑛∑︁
𝑗=1

𝜈𝑗

𝜕2Q(𝑥𝑖, 𝑥𝑗)
𝜕𝑥𝑖𝜕𝑥⊤

𝑗

= 2 𝜈𝑖

𝑛∑︁
𝑗=1

𝜈𝑗

Å (2 + 𝑑) 𝜁(𝑥𝑖, 𝑥𝑗) + 2𝜖

2 (𝜁(𝑥𝑖, 𝑥𝑗) + 𝜖) 𝜁2(𝑥𝑖, 𝑥𝑗)
𝑥𝑖 𝑥⊤

𝑗 + I𝑑×𝑑

ã
𝜒(𝑥𝑖, 𝑥𝑗) ,

𝜕2D2(X,ÙX)
𝜕𝑥𝑖𝜕𝑥⊤

𝑖

= 𝜈𝑖

Û𝑛∑︁
𝑘=1
Û𝜈𝑘

𝜕2Q(𝑥𝑖, Û𝑥𝑘)
𝜕𝑥𝑖𝜕𝑥⊤

𝑖

= 𝜈𝑖

Û𝑛∑︁
𝑘=1
Û𝜈𝑘

(2 + 𝑑) 𝜁(𝑥𝑖, Û𝑥𝑘) + 2𝜖

2 (𝜁(𝑥𝑖, Û𝑥𝑘) + 𝜖) 𝜁2(𝑥𝑖, Û𝑥𝑘)𝜒(𝑥𝑖, Û𝑥𝑘) Û𝑥𝑘 Û𝑥⊤
𝑘 .
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C.1.3 Specification on the Unit Circle

Given the circular variant of the MDMR unit in (6.19), we obtain its first-order derivative w.r.t.
the circular distance metric 𝛿(𝑢, 𝑣) = 𝑢⊤𝑣 following (C.1) as follows

dQ(𝛿)
d𝛿

= 2𝜋(
𝜖2 − 2(1 + 𝛿)

)3/2 = Q(𝛿)
𝜖2 − 2(1 + 𝛿) .

The gradient of Q(𝑢, 𝑣) w.r.t. the sample location 𝑢 is then given by

𝜕Q(𝑢, 𝑣)
𝜕𝑢

= Q(𝑢, 𝑣)
𝜖2 − 2(1 + 𝑢⊤𝑣)𝑣 =: 𝜒(𝑢, 𝑣) 𝑣 , with 𝜒(𝑢, 𝑣) = Q(𝑢, 𝑣)

𝜖2 − 2(1 + 𝑢⊤𝑣) (C.7)

being the coefficient. Further, the Hessian of Q(𝑢, 𝑣) w.r.t. sample locations can be derived
according to the generic expression in (C.3) as

𝜕2Q(𝑢, 𝑣)
𝜕𝑢 𝜕𝑢⊤ = 3

𝜖2 − 2(1 + 𝑢⊤𝑣)𝜒(𝑢, 𝑣) 𝑣 𝑣⊤ ,

𝜕2Q(𝑢, 𝑣)
𝜕𝑢 𝜕𝑣⊤ =

Å 3
𝜖2 − 2(1 + 𝑢⊤𝑣)𝑢 𝑣⊤ + I2×2

ã
𝜒(𝑢, 𝑣) .

C.1.4 Specification on the Manifold of Planar Dual Quaternions

We rewrite the customized MCvMD unit in (6.21) into the following form

Q(𝛿r, 𝛿s) = 2𝜋2(
𝛿2

s + 4 𝜖 𝛿s − 8 𝛿r + 4 𝜖2 − 8
)1/2 =: 2𝜋2

J (𝛿r, 𝛿s)
,

with J (𝛿r, 𝛿s) =
(
𝛿2

s + 4 𝜖 𝛿s − 8𝛿r + 4𝜖2 − 8
)1/2 substituting the denominator. 𝛿r = 𝑢⊤

r 𝑣r and
𝛿s = ‖𝑢s − 𝑣s‖2 denote distance metrics on component domains of the real and dual parts,
respectively. Consequently, we obtain the gradients w.r.t. the real part and the dual part at the
location 𝑢 = [ 𝑢⊤

r , 𝑢⊤
s ]⊤ as

𝜕Q(𝑢, 𝑣)
𝜕𝑢r

= 𝜕Q(𝛿r, 𝛿s)
𝜕𝛿r

𝜕𝛿r(𝑢r, 𝑣s)
𝜕𝑢r

= 8𝜋2

J 3(𝛿r, 𝛿s)
𝑣r ,

𝜕Q(𝑢, 𝑣)
𝜕𝑢s

= 𝜕Q(𝛿r, 𝛿s)
𝜕𝛿s

𝜕𝛿s(𝑢r, 𝑣s)
𝜕𝑢s

= −4𝜋2 𝛿s + 2𝜖

J 3(𝛿r, 𝛿s)
(𝑢s − 𝑣s) ,

respectively. As mentioned in Sec. 6.4.2, the expressions of the Hessians are not provided due to
redundant derivations. However, they are implemented for the corresponding showcases.

C.2 Concentration Parameter for Hyperspherical R&R

Since no analytical solution exists to (6.24), we propose to tailor Newton’s method for solving it
numerically. For that, we derive the derivative of L′(𝜆) w.r.t. 𝜆 as

L′′(𝜆) =
Û𝑛∑︁

𝑘=1
Û𝜈𝑘

∑︀𝑛
𝑖=1(𝑥⊤

𝑖 Û𝑥𝑘)2 exp(𝜆 𝑥⊤
𝑖 Û𝑥𝑘)∑︀𝑛

𝑖=1 exp(𝜆 𝑥⊤
𝑖 Û𝑥𝑘) −

Û𝑛∑︁
𝑘=1
Û𝜈𝑘

Å∑︀𝑛
𝑖=1 𝑥⊤

𝑖 Û𝑥𝑘 exp(𝜆 𝑥⊤
𝑖 Û𝑥𝑘)∑︀𝑛

𝑖=1 exp(𝜆 𝑥⊤
𝑖 Û𝑥𝑘)

ã2

−A′
𝑑(𝜆) , (C.8)
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which involves computing the first derivative of the Bessel function ratio. Based on its expression
given by [12] in the form

A′
𝑑(𝜆) = 1−A𝑑(𝜆)2 − 𝑑− 1

𝜆
A𝑑(𝜆) ,

𝜆𝑖 at the 𝑖-th Newton step can then be updated according to

𝜆𝑖+1 = 𝜆𝑖 − L′(𝜆𝑖)
/
L′′(𝜆𝑖) ,

with L′(𝜆𝑖) and L′′(𝜆𝑖) given by (6.24) and (C.8), respectively. We initialize Newton’s method by
averaging the lower and upper bounds of 𝜆. The initial guess follows 𝜆0 = (𝜆min + 𝜆max) / 2, with

𝜆min = A−1
𝑑

Å Û𝑛∑︁
𝑘=1
Û𝜈𝑘

𝑛∑︁
𝑖=1

𝑥⊤
𝑖 Û𝑥𝑘

ã
and 𝜆max = A−1

𝑑

Å Û𝑛∑︁
𝑘=1
Û𝜈𝑘 max

𝑥𝑖∈X

(
{𝑥⊤

𝑖 Û𝑥𝑘}
)ã

.

Inversion of the Bessel function A𝑑 above can be solved efficiently using the method given by [7].
In practice, we also implement an additional bisection scheme based on the upper and lower bounds
above for the tailored Newton’s method to achieve better convergence properties [112].
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