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About LMA-Exercise

weekly (almost) at 2pm, 50.34 Room-101

language: English/German (also for your oral exams)

duration:  1 - 1.5 h

content

1) lecture-related exercises (sheets + answers + notes) → uploaded to ILIAS

2) research review on state-of-the-art state estimation techniques for autonomous and 

mobile robots → new in SS22, held irregularly, exam-irrelevant
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Towards High-Performance Solid-State-LiDAR-Inertial Odometry and Mapping

LiLi-OM (LIvox LiDAR-Inertial Odometry and Mapping)

cost-effective, real-time LiDAR-inertial odometry and mapping system for onboard setup  

applicable for both solid-state and conventional LiDARs

IMU

Livox Horizon

Velodyne HDL-64E

Reference: Kailai Li, Meng Li, and Uwe D. Hanebeck. Towards High-Performance Solid-State-LiDAR-Inertial Odometry and Mapping. 
IEEE Robotics and Automation Letters, 6(3):5167–5174, 2021. 
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About the Talk 

LiLi-OM (LIvox LiDAR-Inertial Odometry and Mapping)

cost-effective, real-time LiDAR-inertial odometry and mapping system for onboard setup  

applicable for both solid-state and conventional LiDARs

Reference: https://www.livoxtech.com/
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LiDAR-Inertial Odometry and Mapping

Problem formulation

estimate 6 DoF pose of onboard sensor suite at LiDAR frame rate (10Hz)

build a 3D map simultaneously
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Scan Pattern

raw sweep
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Feature Extraction

unfolded sweep

: invalid point

: valid point

raw sweep

: plane feature

: edge candidate

: edge feature

: fitted edge
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Feature Extraction
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: LiDAR regular frame

: keyframe

: IMU readings

Backend Fusion

state vector:
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: edge feature : plane feature
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Conclusions

Limitations

less robust under highly dynamic motions

limited field of view for single solid-state LiDAR

simple loop closure detection

Outlook
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Conclusions

Limitations

less robust under highly dynamic motions

limited field of view for single solid-state LiDAR

simple loop closure detection

Outlook

fusion of more extensive sensory modalities

multiple LiDARs

cameras (monocular)

event-based cameras

aerial platform

innovate sensor fusion framework



Questions?

Schloss Karlsruhe – A 3D Reconstruction
made by LiLi-OM at https://github.com/KIT-ISAS/lili-om



: LiDAR regular frame

: keyframe

: IMU readings

: preintegrated IMU factor

: edge feature : plane feature

: prior factor

Backend Fusion

preintegration

local graph 

optimization

sliding window 

optimization

marginalization
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Iterative Closest Point (ICP)

computes spatial transformations between two point clouds by minimizing a distance metric

fundamental technique for egomotion estimation and mobile perception

Reference: https://www.livoxtech.com/
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Iterative Closest Point (ICP)

LiLi-OM (LIvox LiDAR-Inertial Odometry and Mapping)

computes spatial transformations between two point clouds by minimizing a distance metric

fundamental technique for egomotion estimation and mobile perception

Reference: Izadi, Shahram, et al. "Kinectfusion: Real-time Dynamic 3D Surface Reconstruction and Interaction." ACM SIGGRAPH 2011.
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Iterative Closest Point (ICP)

Reference: Izadi, Shahram, et al. "Kinectfusion: Real-time Dynamic 3D Surface Reconstruction and Interaction." ACM SIGGRAPH 2011.

computes spatial transformations between two point clouds by minimizing a distance metric

fundamental technique for egomotion estimation and mobile perception
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Iterative Closest Point (ICP)

Courtesy: C. Stachniss et al.

If the correct correspondences are known, the correct relative transformation of SE(3) group 

can be calculated in closed form via SVD (Singular Value Decomposition) 
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Iterative Closest Point (ICP)

Courtesy: C. Stachniss et al.

If the correct correspondences are unknown, it is in general impossible to determine the 

optimal relative rotation and translation in one single step
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Iterative Closest Point (ICP)

Courtesy: https://www.youtube.com/shorts/uzOCS_gdZuM.

basic idea: iterate to find the 

alignment

converges if starting positions 

are “close enough” 
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Iterative Closest Point (ICP)

Basic ICP algorithm 

1. determine corresponding points

2. compute rotation and translation via SVD

3. apply transformation         to the points of the set to be registered 

4. compute error metric

5. if error decreased and 

• repeat former steps 1 – 4

• otherwise stop and output final alignment  

Courtesy: C. Stachniss et al.
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Iterative Closest Point (ICP)

ICP variants

point subsets (from one or both sets)

data association 

rejecting certain point pairs (outliers) 

Courtesy: C. Stachniss et al.
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Iterative Closest Point (ICP)

ICP variants: Selecting source points 

use all points

uniform sub-sampling

random sampling

feature-based sampling

normal-space sampling
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Iterative Closest Point (ICP)

Normal-space sampling

ensure that samples have normals distributed as uniformaly as possible

better for mostly smooth areas with sparse features

uniform sampling normal-space sampling
Courtesy: C. Stachniss et al.
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Iterative Closest Point (ICP)

Normal-space sampling

ensure that samples have normals distributed as uniformaly as possible

better for mostly smooth areas with sparse features

random sampling normal-space sampling
Courtesy: C. Stachniss et al.
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Iterative Closest Point (ICP)

Feature-based sampling

find more representative points via preprocessing

better efficiency and accuracy for ICP

Courtesy: C. Stachniss et al.
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Feature Extraction
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Iterative Closest Point (ICP)

ICP variants: Data association

has the greatest effect on convergence and speed

matching approaches:

closest points

normal shooting

closest compatible point

Courtesy: C. Stachniss et al.
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Iterative Closest Point (ICP)

Data association: Closest point

in general stable

slow convergence

Courtesy: C. Stachniss et al.
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Iterative Closest Point (ICP)

Data association: Normal shooting

slightly better convergence than closest point for smooth structures

worse for noisy or complex structure

Courtesy: C. Stachniss et al.
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Iterative Closest Point (ICP)

Data association: Closest compatible point

considers compatibility of points, e.g., normals, colors, curvature, other local features, etc. 

example: find correspondence by minimizing point-to-plane error metric via standard nonlinear 

least squres methods (Levenberg-Marquardt algorithm)

Courtesy: C. Stachniss et al.



43

Iterative Closest Point (ICP)

ICP variants: Rejecting point pairs (outliers)

corresponding points with point-to-point distance larger than a given threshold

rejecting pairs that are not consistent with neighboring pairs

e.g., sort all correspondences w.r.t. their error and delete the worst 1%

Courtesy: C. Stachniss et al.
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Iterative Closest Point (ICP)

Summary

ICP is a very powerful technique for robotic localization and perception.

Major problem is to find correct data associations (accuracy and convergence).

Given correct data associations, transformations can be computed efficiently via SVD.

ICP does not always converge.

Courtesy: C. Stachniss et al.
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Directional Random Variables
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Hannes Möls, Kailai Li, and Uwe D. Hanebeck. 2020 IEEE International Conference on Robotics and Automation (ICRA’20)  

Directional variables are ubiquitous.

highly parallelized plane extraction on depth images



47

Directional variables are ubiquitous.

segmentation in normal mapclustering on unit sphere

highly parallelized plane extraction on depth images transferred to unit spheres

Hannes Möls, Kailai Li, and Uwe D. Hanebeck. 2020 IEEE International Conference on Robotics and Automation (ICRA’20)  
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Directional variables are ubiquitous.

highly parallelized plane extraction on depth images transferred to unit spheres
➢ full resolution (640 x 480) pixelwise segmentation at 60 Hz on embedded GPU (fastest ever) 

Hannes Möls, Kailai Li, and Uwe D. Hanebeck. 2020 IEEE International Conference on Robotics and Automation (ICRA’20)  
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Directional Random Variables

periodic, nonlinear or symmetric topological structure

uncertainty quantification

➢ conventional scheme → Gaussian model in locally linearized space 

deteriorated performance under

large uncertainty or fast transition

local perturbation assumption
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Directional Random Variables

periodic, nonlinear topological structure

uncertainty quantification

➢ conventional scheme → Gaussian model in locally linearized space

➢ directional statistics → parametric models inherently defined on directional manifolds

von Mises distribution

unimodalconcentrationmean
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Directional Random Variables

periodic, nonlinear topological structure

uncertainty quantification

➢ conventional scheme → Gaussian model in locally linearized space

➢ directional statistics → parametric models inherently defined on directional manifolds

Bingham distribution

antipodal symmetry

orientationconcentration

unit circle/sphere/hyperspheres

normalization constant

quaternions
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Directional Random Variables

periodic, nonlinear or symmetric topological structure

uncertainty quantification

➢ conventional scheme → Gaussian model in locally linearized space

➢ directional statistics → parametric models inherently defined on directional manifolds

concentration mean

von Mises‒Fisher distribution

unit sphere/hyperspheres

normalization constant

K. Mardia et al. Directional Statistics

unimodal, isotropic dispersion
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Directional Random Variables

periodic, nonlinear or symmetric topological structure

uncertainty quantification

➢ conventional scheme → Gaussian model in locally linearized space

➢ directional statistics → parametric models inherently defined on directional manifolds

Bingham distribution

antipodal symmetry

orientationconcentration

unit circle/sphere/hyperspheres

normalization constant

K. Mardia et al. Directional Statistics

quaternions
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Directional variables are ubiquitous.

Rigid body motion estimation and robotic perception

Simon Bultmann, Kailai Li, and Uwe D. Hanebeck. 22nd International Conference on Information Fusion (Fusion’19)  
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Direct Image Alignment
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Directional variables are ubiquitous.

Rigid body motion estimation and robotic perception

Simon Bultmann, Kailai Li, and Uwe D. Hanebeck. 22nd International Conference on Information Fusion (Fusion’19)  
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Direct Visual Odometry

avoid feature detection and association (manually designed)

Courtesy: J. Stückler

feature-based odometry (e.g., via filtering, ICP, bundle adjustment, etc.)
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Direct Visual Odometry

avoid feature detection and association (manually designed)

direct image alignment

image warping

RGB-D

fixed-baseline stereo

temporal stereo, tracking and (local) mapping

Courtesy: J. Stückler
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Direct RGB-D Image Alignment

RGB-D sensors measure intensity and depth

warped image ideally the same as the image taken from that pose

compute camera pose transformation by minimizing the photometric error 

Courtesy: J. Stückler
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Direct RGB-D Image Alignment

RGB-D sensors measure intensity and depth

warped image ideally the same as image taken from that pose

compute camera pose transformation by minimizing the photometric error

assumes that pixel measurements are stochastically independent

nonlinear least square problem

efficient optimizers using standard second-order tools (Gauss-Newton, LM) available

Courtesy: J. Stückler
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Direct RGB-D Image Alignment

Courtesy: J. Stückler



62

Direct RGB-D Image Alignment
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Map Representations
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Mapping Approaches

sparse vs. dense

probabilistic vs. deterministic

explicit vs. implicit

raw vs. geometric primitives

examples:

point clouds

occupancy grids

surfels

signed distance function (SDF) -> truncated signed distance function (TSDF)

Courtesy: J. Stückler
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Point Clouds

3D, dense/sparse, deterministic, explicit, (quasi-)raw mapping approach 
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Occupancy Grid Map

Courtesy: S. Thrun et al. 2015.

2D/3D, explicit, probabilistic mapping approach
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Truncated Signed Distance Function (TSDF)

3D volumetric map for 40m x 40m x 40m with 0.05m resolution

➢ 40^3/0.05^3 = 512,000,000 voxels (4.096 GB at double precision)

However, large amount of volumes are actually empty.

3D, implicit, deterministic, dense (typically), mapping approach

Courtesy: Bylow et al., 2013; Newcombe et al., 2011.
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Truncated Signed Distance Function (TSDF)
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Truncated Signed Distance Function (TSDF)
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Surfels

surfel: point + normal + radius 

Courtesy: M. Zwicker, Keller et al., 2013.

3D, deterministic, explicit, dense (typically) mapping approach
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Surfels
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Geometric Primitives

2D/3D, deterministic, explicit, dense/sparse mapping approach



Dr.-Ing. Kailai Li
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Graph-Based SLAM
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Background

Joint pose and map estimation

Chicken-egg problem

Fundamental task for autonomous robots

Basis for navigation systems

Courtesy: J. Stückler
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Directional variables are ubiquitous.

Rigid body motion estimation and robotic perception

Simon Bultmann, Kailai Li, and Uwe D. Hanebeck. 22nd International Conference on Information Fusion (Fusion’19)  



76

Formulation

State: SE(2)/SE(3) pose, speed, IMU biases, etc.

Map: various representation approaches w.r.t. effeciency, accuary, semantics, etc.

Observation: various sensory modalities

Visual sensors: monocular/stereo camera, RGB-D cameras

Range sensors: ultrasonic, radar, UWB, LiDAR (2D/3D)

Others: GNSS, wifi, etc.

Input: given as orders, or measured by onboard sensors

Wheel odometry

Inertial measurement unit (IMU)

Courtesy: J. Stückler

state map observation input initial state
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Sensors

Courtesy: Jinyong Jeong et al.
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System Pipeline Design

Courtesy: J. Stückler

Frontend

Convert raw sensor data into an immediate and intermediate representation

Constraints for optimization, e.g., feature correspondences

Probability distributions of landmarks

Relative trasnformatoin between frames

Etc.

Very task-specific: recursive estimators, iterative closest point, direct image alignment

Backend

Takes intermediate representatoin and solves the underlying state estimation or optmization 

problem

Category of approaches

Extended Kalman filter (EKF) -> EKF-SLAM

Particle filter (PF) -> FastSLAM

Nonlinear least squares -> graph SLAM
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Graph-Based SLAM

Uses a graph to represent the problem, namely, the variables (nodes) and the relations 

between variables (edges)

edges placed between variable nodes representing prior information or information from the 

frontend

Courtesy: G. Grisetti et al.
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Formulation

Courtesy: G. Grisetti et al.

predicted

measurement

node i

node j

measurement

information matrix

error term
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Formulation

Courtesy: G. Grisetti et al.

Implemented through adjacency matrix of the graph

Nonlinear least square problem

Linearize the error function (Taylor expansion)

Compute its derivative

Set it to zero

Solve the linear system

Iterate until convergence
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Linearization

Courtesy: G. Grisetti et al.

Error function for one edge only depends on the two states on the two nodes

Jacobian

non-zero only in the rows corresponding to the two nodes

Sparse structure
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Linearization

Courtesy: G. Grisetti et al.

First-order approximation of residual over two nodes

Sparse structure for Hessians

Zero first derivative leads to solving linear system
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Linearization

pose

bias

inverse

depths
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Optimization

Kailai Li, Johannes Cox, Benjamin Noack, and Uwe D. Hanebeck. IFAC ’20  
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Graph-Based SLAM

Summary

Very useful and universally applicable in most mobile robotic applications (as backend)

Mathematical formulation also used for frontend

Softwares:

g2o

gtsam

ceres 

Courtesy: C. Stachniss et al.
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